DRAFT
APPLICATION SECURITY
DEVELOPER'S GUIDE

Version 1.0
October 4, 2002

Applications and Computing Security Division
Center for Information Assurance Applications

5275 Leesburg Pike
Falls Church, VA 22041

(Thisdocument isfor review. Comments, if any, can be sent to

FOR INFORMATIONAL PURPOSES

Draft

TABLE OF CONTENTS
Page
Number
LOINTRODUCTION ...ttt sttt s b st ae e e e s e nbesaesbesbesnenneeneas 1
LI PURPOSE. ..ottt sttt sttt e e e s aesbe s aeebesseaneese et e eessesbesseaneeneeneenes 1
L2 SCOPE ...ttt ettt bbbt bbb et bR bR Rt et e bbb b nenne et enes 2
1.2.1 Subjects Not Addressed in ThiSDOCUMENLccoiierieriinieseeie e 3
1.3 INTENDED AUDIENCE........oo ittt 3
LANOTE ON STYLE ..ottt sttt sneanenne e enes 4
2.0 BACK GROUND.....c.ciitiiititisiesieeee ettt b et b et ae et e e b et e sbe st e s beebeeseene s 5
2.1 ORGANIZATION AND CONTENT OF THISDOCUMENTccoeverierirne e, 5
22HOW TO USE THISDOCUMENT ..ottt s 6
3OWHAT ISWEB APPLICATION SECURITY? .ottt 13
3.1SECURITY IN THE WEB APPLICATION ARCHITECTURE.......ccocvoinirinireee 14
TN oo/ [o= (Lo g [= Y= SRR 16
3.1.2 Application Program INtEaCe.ccoveeiiereee et 16
T G B AV [T (0 L= VIV =] I < TSP 16
S.L A INTIBSITUCIUNE. ...ttt sttt bbbttt e et et e b e e b b e e e e 16
32 SECURITY-AWARE DEVELOPMENT ..ottt 17
3.2.1 Use a Security-Oriented Development Process and Methodologycceveeverieieesieennee. 17
3211 SSE-CIMM ..ottt sttt st s be bt e et entesaeebenreenennenneas 19
3.2.2 Adopting an Effective Security PhiloSOPhYccccvvveieeececcece e 20
3.2.3 Planning the Development Effort Redigticaly...........cooveiinieniiieeeeee e 20
3.2.4 Security Qudity Assurance Throughout the Life Cycle.........coovevveeieececeeeee e, 20
3.2.5 Accurate, Complete SPECITICAIIONScccveiueeriieie e e 20
I GRS = o U === o o PP 21
3.2.6.1 MiniMiZe FUNCHONAIILYcveeieieeesieeie e 21
3.2.6.2 Minimize Component Size and COMPIEXITYccvevueeeereeie e 23
3.2.6.3 Minimize Trusted COMPONENEScccuereerieeiereesieereeseesieesee e sreesseseesresssesseessesse e 23
3.2.6.4 Minimize Interfaces and OULPULS...........cccoveriereereereeeeseesieseesreessesee e essesseesseenseens 23
3.2.6.5 Avoid High-Risk Web Services, Protocols, and Components............ccoeeveeeeseeennene 24
3.2.6.6 Disable or Remove Unused Capabilities and RESOUICES..........cceeveereenieeiienieseeenn 24
3.2.6.7 Separate Data and CONLIOl..........ceeiiiienieiiree e 24
3.2.6.8 Protect All SEnSitive TranSaCHONSovvirieririeierie e 24
3.2.6.9 Protect Sengitive Dataat RESL........ccceiiiiieiiieeereeeee et 25
3.2.6.10 Include Trustworthy Authentication and AUthOrzZation.............cccceveveereeieeceeseennn 25
3.2.6.11 Always Assume the Operating Environment ISHOSHIE..........cooiiiiiiiiieienieieeee 25
3.2.6.12 Always Assume that Third-Party Software ISHOSIEcceevvevvecieceee e, 25
i

FOR INFORMATIONAL PURPOSES

Draft

3.2.6.13 Never Trust USerS and BrOWSEIS........ccoeeiirierieeieseesieesie et 26
3.2.6.14 Require and Authorize No Privileged Users or User ProCESSES.........ooveveereeereeennene. 26
3.2.6.15 Do Not Rely on Security Through ODSCUNLY.......cc.ereereriiniereee e 26
3.2.6.16 Be Accurate in Y our Assumptions About the Underlying Platform.............cc.......... 27
3.2.6.17 Make Security Mechanisms Easy to Configure and USe..........ccocceveeveeieneenieenenne 27
3.2.6.18 Risk Analyss of AppliCation DESIGN........cccveveerieiiceese e 27
3.2.7 Application Middleware Frameworks...........coueeiiererienieneeie s 28
3.2.8 Redtricting the Devel opment ENVIFONMENT...........covvereeiesiesece e 28
329 Writing Elegant SOfIWEIE.couiiieieeesee et s 28
3.2.9.1 DOCUMENT FTSE ...ttt st sb e 29
3.2.9.2 Keep Code Simple, Small, and Easy to FOIOW...........ccoveiiiiiiiieeeee 29
3.2.9.3 Isolate Security FUNCHONAILYccveveeeesieeie et 29
3.2.9.4 Be Careful with Multitasking and Multithreading...........ccccovereienienieneee e 30
3.2.9.5 USE SECUIE DA@ TYPES...ceeiteieiiiiesiee sttt sne e e nnne e 30
3.2.9.6 ReUSE Proven SECUrE COUE........cceiiiiieieeie et st 30
3.2.9.7 Use Secure Programming Languages and Development TOOIS........c.cccvvevvceeveeenee 31
3.2.9.8 Call Safely to EXterna RESDUICES.........cooueriiirierieeieeeeriee et 31
3.2.9.9 Use Escape Codes with EXtreme Caution..........cocveeereeresee s e 33
3.2.9.10 Maintain aCongstent Coding SLYI€......c.eoiiiiieeieee e 33
3.2.9.11 Find and REMOVE BUGSeoiieiiecie ettt nne e 34
32912 WHLE TOF REUSE........eiieeetieie ettt et st be et sr e e e 34
3.2.9.13 Keep Third-Party Component Fixes and Security Patches Up to Date.................... 34
3.2.9.14 Common LOGIC ENTOrSTO AVOIdcc.coiueeiirierieeieeeesee et 35
3.2.10 SECUNtY- AWAIE TERING....ccueeieeeereeesieeieseesteeeesreesseessesseesteeeesseesseesesseesseessessessseensens 36
3.2.10.1 Rules of Thumb for Security-AWare TEING.......coovereererrerie e 36
3.2.10.2 COUE REVIEBIWS ...ttt bbb b b s 37
3.2.10.3 Source Code SeCUNtY AUAITSccceiieririeeie e 38
3.2.10.4 Penetration Testing During Developmentccccveeereeiesee e 38
40 IMPLEMENTING SECURITY MECHANISMS.....ccooiiiieseseeeeeee e 40
4.1 PUBLIC KEY-ENABLING......iitititeteeste sttt sttt bbb 40
4.1.1 PK-Enaling: A DEFINITION.......cceieieiicieieieeries st 41
4.1.2 WhY PK-ENADIE?.......eceieeee ettt s 42
4.1.3When to PK-ENBDIE.......coeie e e 42
4.1.4 PK-Enabling Web APPlICAIONS........oouiiiiiirieeeiesiesie e 44
4.1.4.1 Choosing an SSL 3.0 Tolerant WED SEIVESccooeeeeieeieeiesee e 45
4.1.5 PK-Enabling Backend Applications. PKI TOOIKItS........cccccereereiinsiere e 46
4.2 IDENTIFICATION AND AUTHENTICATION MECHANISMS......cccooeieeeee, 46
4.2.1 Notification of AUNENICAIION...........oiiririeieeere e 48
4.2.2 Client (Browser)-to-Server Trusted Path............cooooiieieiiie e 49
4.2.2.1 Extending the Chain of Trust to aBackend Server...........ccocvecvveevecce v 50
R N 2 T S < o 7 R 51
4.2.3.1 Browser Use Of HardWare TOKENScccoveierierire et 51

ii

FOR INFORMATIONAL PURPOSES

4.2.4 Reusable (StatiC) PassWOrad I& A ..ottt e 51
4.2.4.1 Implementing Reusable Password 1&A in Web Applications..........cccccevveveecieceennens 52
4.2.4.2 Confidentidity and Integrity of Usernames and Passwords...........cccceevveeneniieneennnns 53
4.2.4.3 UNSUCCESSTUl LOGH TN ATEMPLS.....ccveeieeeiecieerieseesteeie e s snee e 54
A2 44 EXPICIT LOGrOUL ...ttt et e e sne e 54
4.2.4.5 PassWOrd ManagemENtceeeeieereeeeseeseseesteesie e e e sse e sseesseeaesseesseessesseessens 54

425 SNGIE SIGNFON SYSEITIS ..ottt ettt re b e e s seebe e e sre e e e 55
4.2.5.1 SECUNMTY SEIVICE APIS ...ttt bbb 56
4.2.5.2 SSPl in Windows NT and Windows 2000ccooererrernenieneesiesee e ssee e 57
4.2.5.3 Vulnerabilities Of SSO SYSEMS.......cccvieeiieieeie e ae e e 57

4.2.6 Other I& A TECNOIOGIES. ..ot 58
4.2.6.1 One-Time (Dynamic) Password SYSIEMIS.......cccceveerierieeieerieeeeseesieeseeseesseeaesseeneens 58
4.2.6.2 Biometric AUtNeNtiCAON SYSIEMS.......ooeiiiiiieeiesieeie e 58

4.2.7 Pluggable AuthentiCation MOAUIES..........c.eecuereerece e 59

4.3 AUTHORIZATION AND ACCESS CONTROL MECHANISMS......ccooovvvrieerenen, 60

4.3.1 Implementing a Single Application ENntry POINE..........ccccoiirienieenece e 60
4.3.1.1 Implementing the Web Porta’s Checkpoint Program...........ccccoeereeinneeneninncennns 61
4.3.1.2 Limitations of and Alternatives to Web Portal SeCUritycccevveveeveveeneececeenens 62
4.3.1.3 Didtributed Access Management SYSTEMScoieerirreererriesiee e ee e seens 64

4.3.2 Interoperation with System+Level ACCESS CONLIOISccvvevereerieeeeseere e 64
4.3.2.1Web Server ACCESS CONMIOISoouiiieiieriee e 64
4.3.2.2 Database Management System Access CONtroIS........cuevvereeieneesece e e 65

4.3.3 Least Privilege for AppliCation PrOCESSES........ccoiiririeerieeie e 66
4.3.3.1 SEParation Of DULIES........cccueeieeiesieeie e see sttt sre e re e sneeneens 66
4.3.3.2 Separation of Roles and Separation of Privileges..........coooeveeciieiiicniieeeeee 66
4.3.3.3 Minimizing Resources Available to Application ProCESSES..........cceveeeeeveeseecieseenns 66
4.3.3.4 Separation of Domains (CompartmentaliZation)coveeveeenieneeie e 67
4.3.35 Least Privilege in Web AppliCaIONS.ccveieieesiere e ceesie e see e eee e 67
4.3.3.6 Least Privilegein Database APPlICAHONS........ccceieeierie e 68

4.3.4 Role-Based ACCESS CONTIOccoiiiiriiieiee et 68

4.3.5 Additional Web Content Access Control MEBSUIES.............ooeerveereereeniesee e 69
4.3.5.1 Inhibit Copying of HTML SOUrCe COE.........cccereerierieieesieeeeseesie e eae e 69
4.3.5.2 Inhibit Cutting and Pasting Of TexXt CONLENt...........ccoivrieiieereeesee e 69
4.3.5.3 INhibitiNg SCreen CapUE........ccveiieeieceeeese et ste et ee e e aesneenae s 70

4.3.6 Labeling and Marking of Output (Displayed and Printed)ccooovveevenieniniecenieee 70
4.3.6.1 Platform for Internet Content SAection LAEScocovvvereeiiriiieree e 70

4.3.7 Encryption of Data at Rest to Augment AcCess CONrolS........cooveeeveerieniennenniesee e 70

4.3.8 SESSTION CONIOL....c.veiveeiieiieeeie ettt sttt sbe bt e s e b e sae st e naesbenseene e e e 71
4.3.8.1 SesS0N Management SCREIMES.cooi et ee s 71
4.3.8.2 SESTON TIME-OULeeueeieiesiesie sttt sttt bbb 71

44 IMPLEMENTING CONFIDENTIALITY cooititeieieeesie sttt 72

4.4.1 Application Support for ODJECt REUSE..........cceeiiieee e 72

v

FOR INFORMATIONAL PURPOSES

Draft

4.4.1.1 Object Reuse in JAva APPlICAIIONS.........coiieiirieieerie e 72
4.4.1.2 Avoiding Inadvertent Copies of Sengitive Data............cccevvereeeeeneenecce e 72
4.4.1.3 Preventing Core Dumps of SeNStiVe DataL.........cceeverieieeienieseese e 72
4.4.2 Confidentidity of Configuration Dataand include Fles...........cccoocvveevecieseece e, 73
4.4.3 Confidentiality Of USEr [ENtLIES.......ccviireeieieriese e 73
4.4.3.1 Do Not Hard Code User CredentialScccooererereninenereee e 73
4.4.3.2 Pass Sengtive Data USing POST, NOt GETcooiiiiiiieieerieeeesee e 74
4.4.3.3 Exclude Confidential Datafrom REITECLS..........ccoveverinerierieeesese e 74
444 Vdidate URL Pathname EXIENSONS.ccoiiiiiieiieeie ettt 75
445 Limit Data REtUrMEd t0 USEYSoiiiiiiiieiee ettt 76
4.4.6 Do Not Trust Browsersto Store Sensitive Data..........covvveeeeeenienee e 76
4.4.7 Application Integration with Data Encryption Mechanisms...........cccovveveeieneenieceeseeenene, 76
4.4.7.1 Encryption BEfOre TranSMISTON.....cccueieerieeiieniesieesie e sieeseesee e seeseesseessessesseeneens 77
4.4.7.2 Encryption Of Dataat RESL.........ccciieieiesiese et 77
45IMPLEMENTING DATA AND CODE INTEGRITY MECHANISMS........ccccoeuen.... 77
452 Implementing Hash.........cooeeiee et 78
4.5.1.1 Hashing Datato Prevent TamPEiNg........coceerereeneenieeie e ee e neens 78
4.5.2 Integration of Digita Signature MeChaniSIMScccuevieieeiienecre s 79
45.2.1 Interface from Application to Digita Signature Mechanism..........cccceeceveenenieneennens 79
45.2.2 Digita Signature and Validation Capabilitiesfor Browsars..........cceveceveeveecieseennns 80
45.2.3 Digitd Sgnature Vdidation by Server AppliCationScooeeeiiievenie e 80
4.5.2.4 Protection of Cryptographic Materid Used for Digita Signature............cccceveevveeenen. 80
4.5.2.5 Preventing Web Page Defacementcoooieiieieenienie e 81
R @00 = 1 11=0] 7O 81
45.3.1 Digitad Signature of Mobile COE...........c.ooeriiriineeieee e 82
4.6 ACCOUNTABILITY OF APPLICATION USERS.......cccooiiiienineeeee e 82
4.6.1 Application Integration with System Audit Log or Audit Middleware............cccoeceevueennee. 83
4.6.1.1 Minimum Requirements for Application-Leve Audit...........ccccovveeveeievieneececeenns 83
4.6.1.2 Application EventSto Be AUCItEd...........cooiiiiiiiieiece e 84
4.6.1.3 Application Logging if the Underlying Audit System Becomes Unavailable................. 84
4.6.1.4 Protection of Application Log Data Before It Reaches Externd Audit System........... 84
4.6.2 Application Security Violation NOtfiCAONS.......c.cccoeieereeiececse e 84
4.6.2.1 Application Integration with Intruson/Violation Detection............cccceecvveeneriieneennns 84
4.7 NONREPUDIATION BY APPLICATION USERS.......cccciiiirireeeese e 85

50 MAKING APPLICATIONSRESISTANT TO COMPROMISE AND DENIAL OF
SERVICE ...ttt bbbt e e bbbt e bt bt a et et b et bbb e e ne e e 86
5.1 AVOIDING BUFFER OVERFLOW........ccotiiiieieieiesie ettt 86
52 AVOIDING CROSS-SITE SCRIPTING.....cootiiiieiirie ettt 87
5.3 INPUT VALIDATION ...otiiiieieieiesie ettt eee e stesae e ssessessesseeseessessessessessessessesseenes 88
5.3.1 Designing Applicationsto Make Input Vaidation EaSErccocvveeveeivceeneeie e 89

%

FOR INFORMATIONAL PURPOSES

Draft

5.3.1.1 Clearly Define Acceptable Input CharaCteriSiCs.covveverieieeieseesee e 90
5.3.1.2 Use Only Functions That Perform Bounds Checking..........cccoevvevesieneeiinseeseeeen 90
5.3.1.3 Pass Arguments in EnNvironment Parameters.........cocvveeveeieneeneesie e 90
5.3.1.4 Suspend Processing Until Input IsValidatedccoccveveeveieiicececece e, 90
5.3.1.5 Do Not Invoke Untrusted Programs from Trusted Programs..........c.ccoeeeevereeneeennene 90
5.3.1.6 Use Only Independently Certified Third- Party Components...........ccccevveeveveeseeennene. 90
5.3.1.7 Vdidate Data Before Copying to aDatabase.ooeeveevienieieeieceneeie e 90
5.3.1.8 Write Scripts to Check All ArgQUMENES........c.coeeieeieeeese e 91
5.3.1.9 Protect Cookies at Rest and in Trangtccoeeeverieneeneerieree e 91
5.3.1.10 Do Not Use Hidden Fields for User INPUL..........cccvevereerecie e 91
5.3.2 Rgection and Sanitization of Bad INPUL..........cooiiiiiinieee e 92
5.3.3 Notification of COrreCt INPUL..........cceeieeiiieeseee et ee e 92
534 VaAidatioNSt0 PETOMNL.......oiiiiieieee et 93
5.3 4.1 TYPE CHECKSeiitieie ettt s eeae e sneeneeneenreenne e 93
5.3.4.2 Format and Syntax CheCKScceiiiiiiiieeeee e 93
5.3.4.3 Parameter and Character Validity Checks.........ccovevvieereeie e 93
5.3.4.4 DiVide-Dy-Zer0 ChECKS.....ccuiiiiieeieseesee et 99
5.3.4.5 Check for User Input to Formatting ROULINES...........ccceeveeieieere e 99
5.3.4.6 Check for Session Token to Prevent URL Manipulation...........ccooeevereenceninsennee 100
5347 HTTP HEAEr CheCKS........coiiiiiiiiesiesieseeee ettt 100
5.3.5 VIIUS SCANMNING....c.eeiieiiiitie ittt st st be et e sse e s be e s e s seesbeeneesaeesseennesneensens 101
54 INTEGRITY AND INPUT VALIDATION IN DATABASE APPLICATIONS.......... 102
5.4.1.1 Reparsing Requests and Data for Backend Databases...........ccceveeveevieneencesiesene 102
5.4.1.2 Avoiding Direct SQL INJECHION........ccveiieieerecieceereeee e 102
5.4.2 Vdidate Originators of Dataand HTML.........c.cooeeiiriiiiniineeseeeee e 104
55APPLICATION AWARENESS OF THE OPERATING ENVIRONMENT............... 105
56 PROTECTING APPLICATION CONFIGURATION DATA ..o 105

5.7 INTERPROCESS AUTHENTICATION: BEYOND CHALLENGE AND RESPONSE
... 105
D7 L KEIMEIOS. ..o 105
I A Q=0 S 106
5.7.3 Secure Remote Procedure Call...........ooeiiienieieieesese e 106
5.8 USE OF MOBILE CODEcoiiiiieese ettt st st s snenneas 106
5.8.1 Use Only Approved Mobile Code TEChNOIOGIES.........ccvevivreerieieceesecie e 106
5.8.2 Mobile Code Signature and Validation.............cccceririiieieninneeeee e 107
5.8.3 Secure Distribution of Mobil€ COUE...........coeriririiieree s 107
6.0 MAKING APPLICATIONSRESISTANT TO INTERNAL FAILURE..........cccvevenne. 109
6.1 CONTROLLING OPERATION AND AVAILABILITY .o 109
6.1.1 Availability Requiremertsfor DoD ApPPlICAIONS.........ccovreereeniiriiniesieeee e 109
6.1.2 Input Time-Outs and Load LevE LIMILS.........ccccoveeiieiecie e 111

Vi

FOR INFORMATIONAL PURPOSES

6.1.3 Adjusting t0 UNreponsve OULPULoeeeieereenieneesiesiesieeseeseesseeseesessseessesessseeseens 111
6.1.4 Preventing RaCe CONUITIONS........cuvceeiieiesieseesie e e e see e sse e ste e e esse e sneennens 111
6.1.4.1 What iSaRaCE CONAIION?coiieiirieiiesiee ettt e ee s 111
6.1.4.2 Preventing DEAOIOCKS........ccouveieiierie ettt e ste e sae e e e e 112
6.1.4.3 Preventing Sequence CONAITIONS.ccieereriireereeie e sie e see st sae e s seens 114
6.1.5 Application INvocation Of BaCKUP.........cccviueiieieeesiese e 115
6.2 ERROR AND EXCEPTION HANDLING AND RECOVERYcccccvivnvvenereneennn, 115
B.2.1 FAlING SAE......oeiieiieieieceee e bbb 115
6.2.2 EITOr DELECHION......c.eeeeeeieeiie sttt sttt be et et esaeesae e e e sneenbens 116
6.2.3 ReSstance to Denial Of SEIVICE........ooviiiiiecieee e 116
6.2.4 Adminigtrator- Configurable Error RESDONSES.........coviiiieririeerieeeesiee e 116
6.2.5 Transaction Rollback and Checkpoint Restart...........cccooveeeveeiieiesiese e 116
6.2.6 Consstency Checking BEfOr@ RESLAIooeeiieriiiieieeie e 117
6.2.7 SAFE EITON MESSATES......cveiueeiteeeeeteesieestesee st esteeseesseestesseesseesseessesseesseessesneesseensesseensens 117
S S = (o g oo o] 0o RS R TR SPUS 118
7.0DEVELOPMENT TOOLS......ooiirieiesisesee ettt st 119
7.1 APPLICATION MIDDLEWARE FRAMEWORKS.......ccoeitiieeeriese e, 119
7.1.1 Didributed Computing ENVIFONMEN...........ceiieieeiesiesecie e eee e eee e e 119
7.1.2 .NET and Distributed Componert Object MOdEL.............ccoveeiiiiinieieee e 119
7.1.3 Common Object Request Broker ArChiteCtUre............ooveeeieerieeeeseese e eee e 120
7.1.4 Simple Object ACCESS PrOtOCOL...........coiiiieieeieeesee et 121
7.2 OTHER DEVELOPMENT TOOLS.......oiiiiiiiieeie e 122
7.2.1 ComMPHErS AN LINKEN'Sooueiiieiieiieiieeie ettt neenne s 122
A B L o U Te o £ TSP 122
7.2.3WeED AUNONNG TOOIS.......eiieiiiiieieeie sttt sttt sae e e snee e 123
7.231WYSWYG Toolsversus. Text Editorsand HTML Editors...........ccocvvvvenencnenne 123
7.3 PROGRAMMING LANGUAGE SECURITY ..ottt 125
8.0 PREPARING APPLICATIONS FOR DEPLOYMENTcooiiiiiiieieeenee e 126
8.1 PREPARING CODE FOR DEPLOYMENTctiiiesesese e 126
8.1.1 Remove Debugger Hooks and Other Developer Backdoors...........ccevvevieveeseerieseennens 126
8.1.1.1 Explicit Debugger COMMANAS........coeriiirierieeie ettt 126
8.1.1.2 Implicit Debugger COMMANGS.........cceeiueeeerieeieseeseeeesee e esteeee e e e esee e eneeeneesees 126
8.1.2 Remove Data- ColleCting TrapUOOIS........covvereerieeieeee et siee st see st s sae e neens 127
8.1.3 Remove Hard-Coded CredentialScoovieriririieienesie s 128
8.1.4 ReMOVE DEfaUIt ACCOUNES........coiueeiiiiisieeiesee sttt ettt ae e sseeeesneenreas 128
8.1.5 Replace Relaive Pathnames..........cc.voveieeie e 129
8.1.6 RemOve SENStIVE COMIMENES........coiuiiiiiieie ettt sreeee e nre s 129
8.1.7 Remove Unnecessary Files, Pathnames, and URLS.........cccccvvieiisiesecce e 130
8.1.8 Remove Unneeded CallS...........oiiiiiiiiieiee et 130
8.2RUN-TIME CONSIDERATIONS.......oiiiiiterieieie ettt st 131
Vii

FOR INFORMATIONAL PURPOSES

8.2.1 Load Initiddization VAUES SAElY........coceiiiiiiiieee e 131

8.3 SECURE INSTALLATION AND CONFIGURATIONcocvieirinieinesiesieesie e 131
8.3.1 Configure Safdy and Use Safe DEfaUILS.coveeiirieieeie e 131
APPENDIX A: ABBREVIATIONSAND ACRONYMS.....ccooiiieireneenese e 132
APPENDIX B: REFERENCES AND SUGGESTED READING......cccooviiieecee e 137
B.1 REFERENCESUSED TO PREPARE THISDOCUMENT.ccccoveiiririeenienieeeieeen, 137
B.2 SUGGESTED FURTHER READING ..ot 140
B.3BOOKS. ...ttt ettt a e et Re Rt ne bt nennens 152
APPENDIX C: THIRD-PARTY SECURITY TOOLS........oo e 154
C.1 SELECTING THIRD-PARTY TOOLS......ccoiitieeereneese ettt s 154
(O I o | 0 1 0 TSRS 158
APPENDIX D: PROGRAMMING LANGUAGE SECURITY ...oooiieirinieineneneeesie e 172
2R R O N A D I 5 SR 172
D.2VISUAL BASIC ..ttt st st sttt s et e ne s 178
DL.B IAV A e e —e et e —e e aeeebeeeareeenres 178
DAHYPERTEXT MARKUP LANGUAGEcoiieiceceees e 184
D.5 XML AND SDML ..ottt ettt s e e e s na e e sbe e e snseeesnreas 185
D.B ASP AND ISPttt sttt st na et n et e s nens 186
D.7 CGl AND PERL oottt ettt et ne e sbe e snae e e nnneas 197
D.8 STRUCTURED QUERY LANGUAGE.........cccootieereserieese s 201
D.9SHELL SCRIPTING LANGUAGES........c.coo ettt 202
D.10 TOOL COMMAND LANGUAGEcccctieirtsieseste et 202

D 0 I o o 1 PR 202
D80 2 A I e P RS 206
APPENDIX E: SECURITY-ENHANCING LEGACY APPLICATIONS........ccce v 207
E.1 WEB ENABLING FOR SECURITY ...ooiiiiieirinieisesie et 207
E.2 APPLICATION FIREWALLS ...ttt et s 210
E.3SECURITY WRAPPERS.......coo ettt sttt 210

viii

FOR INFORMATIONAL PURPOSES

Draft

1.0 INTRODUCTION

1.1 PURPOSE

This document provides guidance and recommendations to developers interested in securing their
gpplications. The document builds on the gpplication security requirements defined in the
Recommended Standard Application Security Requirements document, drafted as a precursor to
this guide, and provides devel opers with guidance on ways to implement those requirements. The
guidance addresses applications of various types, including Web applications and Web applications that
interoperate with backend databases and other legacy servers. The document discusses ways to avoid
generd vulnerabilities and common programming and coding errors. The document discusses
development methodol ogies and techniques on ways to ensure that security mechanisms are
implemented in applications early in the development life cycle.

It is anticipated that the guidance presented herein will be used as a developer’ s tool to design security
into gpplications during the development phase. The guidance techniques and examples will ad
gpplication devel opers to eliminate potentia application vulnerabilities and security flaws during the early
phases of the gpplication life cycle. At a minimum, the guidance should be used to provoke thought
about gpplication security within the minds of application designers, developers, and programmer's.

It is assumed that the readers of this guide will aready be well versed in effective software devel opment
and testing practices and will have a thorough understanding of, and experience with Web technologies
and the development of Web applications. This document is not intended as a primer to teach novice
devel opers how to develop Web gpplications. It isintended to assst experienced Web developersin
meeting the more stringent and sometimes unique security requirements of Department of Defense
(DoD) Web agpplications.

DoD programs should use this guidance as aresource to asss their devel opers when implementing
security requirements in gpplications. The guidance found in the document includes a compilation of
gpplication development recommendations, references, and pointers to security toolkits, as well as code
and best practices examples to implement security mechanismsin gpplications.

This document can be used as areference during Phase | (Definition) and Phase |l (Veification) of the
DoD Information Technology Security Certification and Accreditation Process (DITSCAP) and
specificaly during Phase |l system development activities. In addition, this guidance should be used in
conjunction with Defense Information Systems Agency’ s (DISA) Security Technica Implementation
Guides (STIGs) during the development cycle. The ST1Gs can be downloaded from the Information

applying the recommended requirements listed in this document will help to ensure ahigh leve of
Security within your gpplication.

1
FOR INFORMATIONAL PURPOSES

Draft

This developer’ s guide is the second document in a series of documents being prepared by the
Applications and Computing Security Divison, Center for Information Assurance Applications. Building
on the application security requirements presented in the first document, this developer’ s guide will assst
developers with implementation of those requirements and present guidance on ways to waysto limit the
generd gpplication vulnerahilities presented in Recommended Standard Application Security
Requirements. The third and fourth documents in this series will identify gpplication security assessment
tools and present assessment methodologies that can be used to validate the gpplication security
mechanisms.

1.2 SCOPE

The primary focus of this document is the development of Web applications including Web gpplications
that interoperate with backend databases and other legacy servers. The emphasisis on security of Web
server gpplication components; the rationae for this emphasis is that server applications are much more
exposed than browsers, and therefore their vulnerabilities are exploitable by a much larger population of
potentia attackers.

Many of the security mechanisms and associated techniques described in this document are relevant
only for applications that run on DoD private Web servers, whether classified or unclassified, misson
critical or not. Because DoD publicly accessible (public) Web servers do not require user
authentication, authorization, accountability, or nonrepudiation, much of the materid in this document will
not be relevant for developers of DoD public Web applications.

Neverthdess, the access control (including role-based access control), integrity, and availability
mechanisms and techniques described should be equaly rdlevant for developers of private and public
Web applications. The DoD Public Key Infrastructure Program Management Office (PK1 PMO)
specific definitions of private and public Web servers. Also of interest for developers of public Web
goplications may be the Nationd Ingtitutes of Standards and Technology (NIST) Specid Publication
800-44, Guidelines on Security Public Web Servers, specificaly Section 5 on security Web content
and Section 6 on authentication and encryption technologies. See

An attempt has been made to link specific guidance to some of the more common vulnerabilities, to help
reduce the occurrence of these vulnerabilities in gpplications. The vulnerahility list is not dl-indusve and
will be amended as required. This document does contain vulnerability remediation information and
specific guidance on methods to avoid some of the generd and specific vulnerabilities.

Thisliving document contains a generd guidance and best practices on implementing security in
gpplicaions. The guidance and coding examples will continue to be refined and enlarged as time goes
on. Revisons and updates to this document are planned annually.

2
FOR INFORMATIONAL PURPOSES

Draft

1.2.1 Subjects Not Addressed in This Document

The following subjects are considered outside the scope of the main body of this document, or they
have been addressed in alimited way in the gppendices.

Backend databases: Security of backend databases is discussed only in terms of the security of
the interface between the backend database and the Web agpplication. Implementing database
security and security in non-Web database applications is outside the scope of this document.

Legacy applications: Discusson of retrofitting of security into legacy gpplicationsis discussed
briefly in Appendix E and is limited to the implementation of security when Web enabling legacy
goplications.

Browser security: The browser security guidance in the body of this document pertains to the
secure interoperation of and interfaces between Web server applications and commodity
desktop browsers. Browser security itself isthe result of correct configuration by the ingtaler
and correct use by the user, rather than of any effort on the part of the application developer. It
is hoped that you understand browser security capabilities and vulnerabilitieswell to better
design the server gpplication’s security mechanisms and interfaces to make up for the security
limitations of the browser. There are some useful references in Appendix B pertaining to
browser security.

Mobile network-based Web applications. Web gpplications implemented on handheld
computers, mobile applications (including Web agpplications) on handheld computers
interconnected by wireless networks, agent-based applications (often used in conjunction with
active networks), and collaboration applications (often in multicast networks) will be addressed
in afuture verson of the documen.

E-mail and messaging applications: Although it is recognized that e-mail and messaging
gpplications may be incorporated into the larger Web gpplication, security requirements and
implementation guidance for DoD e-mail and messaging applications are conddered outsde the
scope of this document. They are being addressed by other DaD initiatives, such asthe
Defense Message System and DoD PKI.

1.3 INTENDED AUDIENCE

Application devel opers should use this document as a guide for implementing security featuresin their
gpplications so they function securely on DoD systems. The document will help application developers
understand what needs to be secured so they can develop and insert specific application security
controls and avoid cregting vulnerabilitiesin their applications. Examples presented can be modified as
required by developersfor incluson in their gpplications.

3
FOR INFORMATIONAL PURPOSES

Draft

Some of the information in this document may be beneficia to system administrators and system security
engineers. However, those personnd interested in configuration and operationa security requirements
should refer to the various STIGs currently available from DISA.

1.4ANOTEONSTYLE

For clarity and conciseness, in addressing this document has been written in the second person with the
imperative mood. This may make the document’ s tone seem rather assertive at times; however, thiswas
preferred rather than writing in the softer, less direct third person.

4
FOR INFORMATIONAL PURPOSES

Draft

2.0 BACKGROUND

Themisson of the DISA Application and Computing Security Divison (Code API2) isto provide for
the identification, development, systems engineering, prototyping, provisoning, and implementation of
various technologies supporting the defense-in-depth (DI1D) concept for multi-layered protection of the
globa gpplications and computing infrastructure of the globd information grid (GIG).

The DISA Application and Computing Security Divison believes that a core set of gpplication security
requirements and common vulnerabilitiesfor al applications exigs. This document aids developers with
the implementation of those requirementsin their gpplications. The Application and Computing Security
Divison will use this document to compile and categorize developer guidance, hdpful security toal kits,
and coding best practices.

2.1 ORGANIZATION AND CONTENT OF THISDOCUMENT
This document is organized asfollows:
Executive Summary: Highlights the key topics addressed in this document.

Section 1, Introduction: Describes the purpose and scope of the developer guidance provided in the
document, the type of problems to be solved, the audience targeted, and the prerequisite knowledge
expected of the reader.

Section 2, Background: Describes the application security problems at ahigh level and discussesthe
role of the DISA Application Security organization, the purpose of the Recommended Standard
Application Security Requirements documernt, and its rdationship to this Application Security
Developer’s Guide. Also introduces plans for future documents in this series on guidance for
gpplication devel oper.

Section 3, Security-Awar e Development: Provides guidance on software development practices and
software engineering principles that promote the creation of secure applications.

Section 4, Adding Required Technical Security Mechanisms to Applications: Provides guidance to
help developers implement the technica security mechanisms specified in the Recommended Standard
Application Security Requirements within applications, or to use the appropriate gpplication program
interfaces (APIs) to integrate applications with externa security mechanisms. These technicad security
mechanisms are designed primarily to protect the data that gpplications process; they include
mechanisms for identification and user identification and authentication (I&A), access control, data
integrity and availability, and accountability and nonrepudiation of actions taken by users of the
goplication.

Section 5, Making Applications Resistant to Compromise: Provides guidance beyond the
implementation of technicd security mechanisms, on designing and implementing hacker- proof
gpplications. This guidance includes tips on minimizing the likdihood of exploitable vulnerabilities, safe

5
FOR INFORMATIONAL PURPOSES

Draft

design and coding practices, implementation of interprocess trust mechanisms and effective input
vaidations, and recommendations of add-on technica mechanisms that can help protect the integrity
and avallahility of the application program itsdlf, versus the data it handles.

Section 6, Making Applications Resistant to Internal Failure: Provides guidance beyond making the
gpplication resstant to externd attack, on designing and implementing correctly operating, fal-safe
goplications. This guidance isintended to further improve application availability by minimizing design
and coding errors. It includes tips on avoiding problematic congtructs and implementing effective error
handling to minimize the frequency and impact of gpplication failures.

Section 7, Choosing and Using Devel opment Tools to Promote Security: Provides guidance on the
selection of development tools, such as compilers, linkers, debuggers, and libraries-that promote rather
than impede application security, and the security-aware use of those tools. This guidance includes
discussions of common security violations within various development tools and provides tips on how to
work around or fix these problems.

Section 8, Preparing Applications for Deployment: Provides guidance on cleaning up application
code to remove any residud security problems before deployment.

Appendix A, Abbreviations and Acronyms. Defines the acronyms and abbreviaions used in this
document.

Appendix B, References and Suggested Reading: Presentsalist of printed and on-line documents and
books used when preparing this document and lists additiona documentary resources recommended for
use by application devel opers.

Appendix C, Third-Party Security Tools: Provides guidance on sdecting commercid off-the-shdf
(COTYS) applications and application security components. It also presentsalist of available
government off-the-shelf (GOTYS), COTS, and (limited) open source gpplication security components
and development tools that developers may find useful in implementing secure applications. Cross-
references to Appendix C appear throughout Sections 3 and 4 of this document, introducing
components and tools that may help the developer enact particular recommendations.

Appendix D, Programming Language Security: Discusses security issues pertaining to specific
programming languages used in Web development.

Appendix E, Security-Enhancing Legacy Applications: Provides guidance on retrofitting existing

gpplications by adding security mechanisms without rewriting the gpplication code. Specid emphasisis
given to the security issues associated with Web-enabling of legacy applications.

22HOW TO USE THISDOCUMENT

The guidance in this document is not intended to define a secure gpplication devel opment methodol ogy.
It is, however, intended to define a set of secure application development strategies.

6
FOR INFORMATIONAL PURPOSES

Draft

Accordingly, the recommended activities and techniques in Sections 3 through 8 should be integrated
into the Web application development process and methodology you use to help improve the security of
your software devel opment process, and of the Web applications that are produced by that process.

In practica terms, this document is meant to provide guidance that will enable the Web application
developer to satisfy the DISA Recommended Standard Application Security Requirements To this
end, this document provides devel oper guidance on how to

1. Implement security mechanisms and capabilities specified in the DISA Recommended
Standard Application Security Requirementswithin Web gpplications, these are the
mechanisms and capabilities that enable Web applications to protect the information they
process

2. Ensurethat gpplications can protect themselves against compromise and denid of service-
induced failure. This guidanceis intended to satisfy the DISA Recommended Sandard
Application Security Requirements pertaining to gpplication integrity and availability, and
moreover to address the 22 categories of common gpplication vulnerabilities defined in thet
document.

Tables2-1 and 2-2 are provided as quick cross-references for developers. Table 2-1 isacross
reference matrix that maps the individua security requirements in Section 4 of Recommended Standard
Application Security Requirementsto the sections and subsections the present document. Table 2-2
provides a cross-reference matrix that maps the 22 common vulnerabilitiesidentified in Section 3 of
Recommended Standard Application Security Requirementswith the relevant sections and
subsections of the present document.

If desired, these cross-reference matrices can be used in conjunction with or in lieu of the table contents
page to navigate through this document to identify the sections of the document that will address specific
requirements defined in the DISA requirements document. In addition, they can be used during the
assessment of the Web application specification, design, and implementation, to ensure that each of
these satisfies the necessary requirements.

Table 2-1: Security Service Requirements and Associated Developer Guidance

Requirements Document Section No. | Developer Guidance Section No.

Requirements for All IA Mechanisms
4.0.1: No bypass of security controls 4.3.1,4.3.2.1
4.0.2: Integrity of external security 3.2.6.6, 3.2.6.11-13, 3.2.6.16, 3.2.9.8, 3.2.9.13
4.0.3: Integrity of external operation 3.2.6.6,3.2.6.11-13, 3.2.6.16, 3.2.9.8, 3.2.9.13
4.0.4: Integrity of platform security 3.2.6.16
4.0.5: Integrity of platform operation and data | 3.2.6.16
4.0.6: Interoperability with DoD PKI 4.1
4.0.7: Class 4 certificates 4.2
4.0.8: PKE of applications 4.1
4.0.9: Approval of crypto 4.1
4.0.10 High-risk services 3.2.6.5

7

FOR INFORMATIONAL PURPOSES

Draft

Requirements Document Section No.

Developer Guidance Section No.

4.0.11: Application deployment

8.0

4.0.12: Privileged processes

3.2.6.3,3.2.6.14, 4.3.3, G1.3.1

4.0.13: HTML comments

7.23.1.1,8.1.1.6

4.0.14: Browser application facilities

Appendix F

General Application Identification and Authentication
4.1.1: Authentication of users 3.2.6.10, 4.2
4.1.2: Required I&A technology 4.2
4.1.3: Desirable I&A technology 4.2
4.1.4: Authentication chain of trust 4.2.2.1
4.1.5: 1&A trusted path 4.2.2
4.1.6: Backend system I&A 4221
4.1.7: Maximum number of unsuccessful 4.2.4.3
attempts
4.1.8: 1&A lockout period 4.2.4.4

4.1.9: I&A using PKI certificates

4.2.2.1, Appendix C

4.1.10: 1&A using PKI tokens 4.2.2,4.2.3.1, Appendix C
4.1.11: Private Web server 1&A 4.1.3

4.1.12: Public Web server 1&A 4.1.3

4.1.13: Classified Web server I&A 4.1.3

4.1.14: Browser support for tokens 4.2.3.1, Appendix C
4.1.15: No 1&A by Java applets 4.2

4.1.16: Support for Class 4 certs 4.2

4.1.17: Support for CAC 4.2.3.1

4.1.18: I&A using biometrics 4.2.6.2, Appendix C
4.1.19: Strong passwords 4.2.4.5

4.1.20: Password changes 4.2.4.5

4.1.21: Password expiration 4.2.4.5

4.1.22: Selection of new password 4.2.4.5

4.1.23: Group I&A 4.3.1.1

4.1.24: Confidentiality of transmitted 3.2.6.8,4.2.3.,4.4.3.2
passwords

4.1.25: Confidentiality of password during
reformatting

Determined not to be an application function.

4.1.26: Integrity of I1&A data

4.2.3

4.1.27: 1&A between client and server
processes

4.2,42.2,57.1,57.2,5.7.3

4.1.28: Interprocess I&A in peer-to-peer
applications

5.7.1,5.7.2,5.7.3

4.1.29: Warning message to authenticated
user

42.1,431.2,436.1

4.1.30: Unigue usernames

42.3.1,424.1.1,4.2.4.2

4.1.31: Unigue passwords

42.3.1,424.1.1,4.2.4.2

4.1.32: No anonymous accounts

4.2.2,4.2.45,4.3.3.5

4.1.33: Authentication requires trustworthy 4.2
credential
4.1.34: Freedom in assigning usernames and | 4.2.4.5

group IDs

General Application Autho

rization and Access Control

4.2.1: Authorization

4.3

4.2.2: Authorization information management

4.3

FOR INFORMATI

8
ONAL PURPOSES

Draft

Requirements Document Section No.

Developer Guidance Section No.

4.2.3: Authorization information confidentiality | 4.3
4.2.4: Authorization information integrity 4.3
4.2.5: Authorization information availability 4.3

4.2.6: Interprocess authorization

52,5.7.1,57.2,573,4221

4.2.7: RBAC for privileged accounts 4.3.4, Appendix C
4.2.8: RBAC in classified applications 4.3.4

4.2.9: Maximum number of sessions 4.3.8.1

4.2.10: Inactivity time-out 4.3.8.2

4.2.11: Access control for classified data 4.3

4.2.12: Access control for sensitive and 4.3

Mission Category | unclassified data

4.2.13: Data change notification 4.3.2.2.1

4.2.14: Labeling of classified data 4.3.6

4.2.15: Labeling of unclassified data 4.3.6

4.2.16: Marking of output 4.3.6

4.2.17: Invalid pathname references 43.2.1.1,8.1.1.7

4.2.18: Truncated pathnames

3.2.9.85,4.3.2.1.2

4.2.19: Relative pathnames 3.2.9.85,4.3.2.1.2,7.23.1.1.2,8.1.1.5
4.2.20: Relative pathnames input by users 4.3.2.1.2
4.2.21: Rejection of directly entered URLs 4.3.1.2
4.2.22: Browser protection of user identity 4.4.3, Appendix F
4.2.23: CGl scripts 4.3.3.5, G1.7
General Application Confidentiality
4.3.1: Encryption API 4.4.7
4.3.2: Nondisclosure of cleartext data 4.24.1,4.47.1
4.3.3: Encryption before transmission 3.2.6.8,4.2.3.1,4.43.2,4.4.7.1
4.3.4: Encryption of stored data 3.2.6.9, 4.4.7.2, Appendix C
4.3.5: Protection of cryptokeys 4.4.7
4.3.6: PKI encryption certificates 4.2
4.3.7: Application object reuse 4.4.1
4.3.8: Confidentiality of crypto material 3.2.6.1-9, 4.4.7
4.3.9: Confidentiality of user identities 4.4.3,8.1.1.3

General Appli

cation Integrity

4.4.1: Integrity of transmitted data 3.2.6.1-18, 4.5.1, 4.5.3
4.4.2: Integrity of transmitted application code | 4.5.3

4.4.3: Integrity of stored data 3.2.6.9

4.4.4: Integrity mechanism validation 4.5.3, Appendix C

4.4.5: Validation of parameters

3.2.9.8.3,4.5,5.343

4.4.6: Notification of acceptable input 5.3.3
4.4.7: Validation of user input 5.3, G1.6.2.2
4.4.8: Rejection of incorrect input 5.3.2
4.4.9: Input validations by server 5.3
4.4.10: Data containing active content 5.34.1
4.4.11: Application process integrity 4.3,5.0
4.4.12: Integrity of transmitted application 45.3
code
4.4.13: Application configuration integrity 5.6
4.4.14: Application executable integrity 4.5.3
4.4.15: Time and date stamp of data 4.32.2.1
9

FOR INFORMATI

ONAL PURPOSES

Draft

Requirements Document Section No.

Developer Guidance Section No.

modification

4.4.16: Display of data time and date stamp 4.3.2.2.1

4.4.17: Resolution of mode changes Determined not to be relevant
4.4.18: Initialization of variables 8.1.2.1

4.4.19: Integrity of crypto data 3.2.6.9,4.4.7,4.5.3

4.4.20: Cryptokey revocation 4.4.7

4.4:21: Certificate revocation 4.1.4,4.4.7

4.4.22: Signature of code 45,4.5.2.1-5

4.4.23: Use of hidden fields

4.2.2,4.5.1,5.3.1.10

General Application Availability

4.5.1: Data availability 6.1.1.45
4.5.2: Server application availability 6.1.1
4.5.3: Mission Category 1 client application 6.1.1
availability

4.5.4: Maintenance of secure state 6.2.1
4.5.5: Application failure notification 6.2.2,6.2.4
4.5.6: Secure application recovery 6.2.1
4.5.7: Application denial of service 6.0, G1.1.2
4.5.8: Error handling and recovery 6.2.4-8
4.5.9: Missing files 6.2.1
4.5.10: Key recovery 4.4.7

General Application Accountability

4.6.1: Audit and event logging mechanism

4.6.1.2, Appendix C

4.6.2: Configurable audit and log parameters 46.1.1,4.6.1.2
4.6.3: Events to be audited and logged 4.6.1.2

4.6.4: Binding of user ID to audit record 4.6.1.2

4.6.5: Audit information captured by classified | 4.6.1.2
applications

4.6.6: Audit information captured by sensitive | 4.6.1.2

and nonpublic access applications

4.6.7: Audit information captured by public 4.6.1.2

access applications

4.6.8: Protection of audit records 4.6.1.4

4.6.9: Audit trail fill thresholds 4.6.1.1

4.6.10: Audit failure 46.1.1,4.6.1.3
4.6.11: Security violation notifications 4.6.2.1

4.6.12: Audit trail viewing and reporting tool 4.6.1.1

General Applicati

on Nonrepudiation

4.7.1: Digital signature of created and
transmitted data

452.1-4525.1

4.7.2: Digital signature of received data (proof
of delivery)

4522

4.7.3: Digital signature validations

4.5.2.3, Appendix C

4.7.4: Protection of digital signature security 45.2.4
data
4.7.5: PKE of e-mail applications 1.2 Note

Use of Mobile Code in Applications

4.8.1: Category 1 and 2 mobile code source 45.3.1,5.8
4.8.2: Category 1 and 2 mobile code 5.8
execution

10

FOR INFORMATI

ONAL PURPOSES

Draft

Requirements Document Section No.

Developer Guidance Section No.

4.8.3: Category 2 mobile code execution

5.8

4.8.4: Category 2 mobile code notification 5.8
4.8.5: Category 3 mobile code 5.8.1
4.8.6: Emerging mobile code technology 5.8
4.8.7: Mobile code in e-mail messages 1.2 Note
4.8.8: E-mail client mobile code notification 1.2 Note

Table 2-2: Common Vulnerabilities and Associated Developer Guidance

Vulnerability Code and Description

Guidance Section No.

V1: Inadequate I1&A 4.2

V2: Insufficient access control 4.3

V3: Improper integration of application 8.1.3.1
components

V4: Weak passwords 4.2.4.5

V5: Plain text communication of sensitive 3.2.6.8,4.4.3.2
information

V6: Incorrect reparsing of data 45.2.9.1

V7: Buffer overflow 5.1,G1.1.2

V8: Lack of adequate parameter validation

3.2.9.8.3,4.5.2.4,5.3.4.3

V9: Input validation of data containing active
content

534.1

V10: Acceptance meta code embedded within
input data

3.2.9.8.4,5.3.4.1,5.3.4.3.2.1-2

V11: Acceptance of illegal characters in SQL
queries

54.1.2

V12: Use of relative pathnames

4.3.2.1.2,8.1.1.5

V13: Acceptance of truncated pathnames

4.3.2.1.2

V14: Links to pathnames no longer present on
the server

43.21.1,8.1.1.7

V15: Inefficient error handling and error 6.2
recovery

V16: CGI script holes G1.7
V17: Presence of developer backdoors 7.2.2,81.1.1
V18: Password grabbing and replay 4.2.4.1
V19: Susceptibility of cookies to content 4.2.4.1
changes

V20: Lack of access controls on directly typed | 4.3.1.2.1
URLs

V21: Use of hidden fields 5.3.1.10
V22: Web page defacement 4.3.5

In addition to the guidance in the body of this document, there are severd gppendices. Of particular
interest is Appendix B, which provides not only alist of the references used to devel op this document,
but an extensive list of suggested further reading that includes both links to on-line documentation and
references to books. We consider that reading to be potentidly helpful in further eucidating ideas

11
FOR INFORMATIONAL PURPOSES

Draft

presented in this document, going into much greater detall in some areas, and aso introducing interesting
approaches other devel opers have used to solve specific problemsin securing their Web applications.

Appendix C provides an extensve lig of third-party products and tools that developers may find helpful
when seeking exigting security mechanisms and functiondity that they can integrate into their
goplications, and when seeking devel opment tools to support the secure development methodology and
process.

Moreover, Appendix C provides guidance for developers and systems engineersin some criteria that
third-party products should satisfy to quaify for usein DoD Web gpplications. Appendix C isnot
intended to replace or even formally augment DoD procurement policy; however, it isintended to
provide akind of first cut set of minimal requirements that devel opers and engineers should keegp in mind
when assessing a particular third-party candidate product, thus increasing the likelihood that the
products the devel oper/engineer does recommend for procurement will satisfy the forma procurement
requirements.

Appendix D of this document provides guidance specific to the use of individua programming
languages. This guidanceis collected in Appendix D, rather than included in the body of this document,
in recognition of the fact that most developerswill not be interested in the security issues of
programming languages they have no intention of usng. Appendix D isintended to augment and specify
the more generd guidance given in the body of this document in areas such as input validation, buffer
overflow, and others.

Appendix E of this document provides guidance to developers who are adding security to legacy
applications by Web enabling those applications.

12
FOR INFORMATIONAL PURPOSES

Draft

3.0 WHAT ISWEB APPLICATION SECURITY?
Web application security has two main objectives.

1. Providing the security functiondity to or within the gpplication thet it needs to protect the datait
processes

2. Protecting the gpplication itsdf from compromise.

Both of these objectives are expressed in DISA’s Recommended Application Security Requirements
(Verson 1.1, 6 June 2002), and the guidance in this document is specificadly intended to help you
achieve these objectives in the gpplications you deve op.

Objective #1 is addressed mainly in Section 4, which discusses how to implement the security
mechanisms to be used by applications to protect the data they process. In the case of DOD Web
goplications, many of the security mechanisms will involve the technologies provided by the DoD PKI.
However, not al security needs can be met by DoD PKI, so this document is more than a primer on
public key-enabling (PKE), and indeed refers devel opers to the dready significant body of
documentation produced by DISA on PKE of DoD applications. Objective #1 will mostly concern
security services provided to the gpplication (by middieware or operating system level mechanisms),
rather than functions coded within the application. Y our task as a developer will be implementing the
goplication’sinterfaces to such services correctly and consstently.

Objective #2 is addressed mainly in Section 5 and 6, which discuss how to make the application
resstant to compromise and resstant to internd errors that could make the gpplication susceptible to
denid-of-service attacks. For Objective #2, it may help to understand why hackers who have
traditiondly targeted networks and operating systems have begun increasingly to attack applications.

In general, hackers attack gpplicationsin an attempt to change their privilege levels so they can

Do more than they are supposed to do
See more than they are supposed to see
Deny sarvice to authorized users.

There are actudly only afew, quite popular attack styles that account for the vast mgority of known
atacks. These are

Overflows

String format attacks
Input validation errors
Race conditions

These atack styles are launched againgt al types of objects, including network devices, operating
sysems, middieware, and gpplications. In fact, dl software is vulnerable to these attacks, no matter
where that software resides in the gpplication architecture. But wheress the security protection of

13
FOR INFORMATIONAL PURPOSES

Draft

operating systems and networksis a well-established discipline, security protection of applicationsisa
farly new science. Hackers are turning increasingly to applications as targets because networks and
operaing systems are growing more difficult to crack. Applications are the new frontier for hackers-and
must aso become the new frontier for security. Unlike application security mechanisms, the techniques
the gpplication usesto protect its own integrity and availability (Objective #2) may well require
development of logic within the gpplication itself. Because such kinds of attacks may be rdatively
unfamiliar to many developers, a Sgnificant amount of information has been provided in this document
on the countermeasures-the most significant detaiinput being vaidation and error handling and
recovery-you can implement within the gpplication itsdf to minimize its vulnerahility to these attacks.

Firdt, however, it may be useful to understand what we mean when we refer to a Web gpplication, as
well asits relationship to security middleware and the underlying security mechanismsin the operating
system and throughout the operating environment.

3.1SECURITY IN THE WEB APPLICATION ARCHITECTURE

Figure 3-1 depicts anotiona architecture for a\Web server application (see Appendix A for
abbreviations and acronyms).

14
FOR INFORMATIONAL PURPOSES

Draft

DEVELOPED APPLICATIONS THIRD-PARTY APPLICATIONS
« Java « Portal
*C,C++ * Browsers
APPLICATION « Perl «Plug-ins
« other CGls
* HTML, XML
- SQL

APPLICATION PROGRAMMATIC INTERFACE (GSSAPI, RPCs, call-level interfaces, SOAP, IlOP, others)

SECURITY SERVICES OTHER SERVICES
MIDDLEWARE * Authentication (SSL/TLS, X.509, Kerberos) *Web (e.g., HTTP, HTTPS, WebDAV)
and « Authorization, Access Control (X.509, ACL, Kerberos) * Messaging (SMTP, X.400)
« Encryption (SSL/TLS, AES, 3DES) « Directory (LDAP, X.500)

SUPPORTING « Integrity (SHA-1, DSA) » Other comms (e.g., FTP)
PROTOCOLS « Input Validation (third-party filters, virus scanners) *DBMS (SQL, XML)
NOT CODED Nonrepudiation (DSA) « Object Management (e.g., ORB)

INTO THE « Auditing and Logging « Multimedia (e.g., Flash)
APPLICATION
(provided by Web

server ((erdthwd-party « PKI, KMI + Sockets
add-on) * SSO, password management, policy management
NETWORK (OPERATING ENVIRONMENT)
NT
SERVER PLATFORM | Router
* File system (NFS, AFS, etc.) SSO N
INFRASTRUCTURE » OS services, libraries, drivers Server ; INTERNET
(OS, hardware, network) : -lp—%jt/ Iistack A or

: (el . EXTRANET

« Biometric device Win2K N

« Computer hardware, etc. E

T Proxy
UNIX
DBMS ~—_

Figure 1: Notional Web Application Architecture

The upper layers of the application-the application programs and APIs, and the middieware layers
below it—are logical representations. The lower infrastructure layer depicts both alogica representation
of the underlying server platform infrastructure and a physical representation of the operating
environment that also provides services indirectly to the Web application (e.g., single sgn-on [SSO],
firewall, virtud private network [VPN], proxy servers). Depending on who its user community is, the
goplication itself may run on ether of the serversin the demilitarized zone (DMZ), or possibly on one of
the servers on the intranet.

The upper layer of the notional architecture reflects devel oped applications. To some extent, the
guidance provided in this document can form the basis for defining criteriafor evauating third- party
goplicaions, particularly those that will be integrated with custom-developed programs to create the
larger Web gpplication. The gpplication programmatic interfaces, middleware, and infrastructure are of
interest. They are the layersthat will enable the applications to obtain many of the security services and
protections they need from prexisting sources like the DoD PKI, the Web server, and the underlying
operating system, ingtead of having to include them dl in their own program code.

15
FOR INFORMATIONAL PURPOSES

Draft

3.1.1 Application Layer

This is where the gpplication-unique functiondity—that is, the gpplication programs—is implemented. The
goplication may be custom developed, or it may be a third-party (commercia or public domain)
program or it may be integrated to incorporate both third-party and custom-developed functiondity; for
example, acommercid Web portad application through which are integrated severd custom-devel oped
HTML database forms and Java servlets.

3.1.2 Application Program Interface

The APIs provide the application program’ s interfaces to the underlying services provided by
middleware or by infrastructure. They may include sandards-based AP!'s, such the Generic Security
Service APl (GSS-API) defined by the Internet Engineering Task Force (IETF) Requests for
Comments (RFCs) RFC 1508 and RFC 1509, the Simple Object Access Protocol (SOAP) defined by
the World Wide Web Consortium (WC3; for more on SOAP, see Section 7.1.4), or SAML (Security
Assartion Markup Language, an XM L-based security standard for exchanging authentication and
authorization information by the Organization for the Advancement of Structured Information Standards
[OASIS]; see Appendix D, Section D.5 for more information on XML security standards). Or they
may be proprietary APIs defined by the supplier of the middieware. Even more, they may be smple
cdl-leve interfaces such as a Remote Procedure Cal (RPC; see Section 5.7.3 for information on
Secure RPC).

3.1.3 Middleware Layers

Security middleware is designed to create salf-contained security service functiondity that can be used
by multiple gpplications. On the client, this middleware takes the form of secure sockets layer (SSL)
and any other PKI services (e.g., digita signature) linked into the browser. On the server, security
middleware can be used to implement al of the standard security services the server gpplication will
need, including authentication, authorization, access control (beyond what is provided by the operating
system), encryption, integrity mechanisms, auditing, nonrepudiation, and even some input validations and
filtering.

Security middleware dso incorporates the gpplication-layer portions of security infrastructure services
such as PK1, SSO, and biometric systems relied upon by the application. These lower-level middleware
services may interface directly with the application, or they may interface with higher-level middleware
services that use them to provide their own services to the gpplication. For example, SSL may rely on
the underlying PKI1 to provide it accessto the cryptokeys and X.509 certificates it needs to provide the
gpplication’s authentication and encryption services.

3.1.4 Infrastructure

Broadly, the infrastructure is the operating environment in which the goplication runs. Thisindudes the
plaform environment—the underlying operating system services and facilities, networking services, and
hardware-the computing platform itself, and any cryptographic token, biometric device, and the like

16
FOR INFORMATIONAL PURPOSES

Draft

with which the application interoperates. The infrastructure can aso be seen in awider context, asthe
entire networked environment in which the gpplication, on its platform infrastructure, operates. Some of
the security and other services used by the application may be provided to it over the network by other
physical systems, such as SSO servers, backend databases, directories, and message-handling sysems.

Other systemsin the network infrastructure provide services to the application indirectly. By performing
certain security functions—such as VPN, proxy and firewall protection-they create another layer of
defenses that envelop the gpplication and its underlying middleware, operating system, and hardware
platform, which collectively provide the security functiondity of and direct security protection to the
goplication itsdlf. For example, an gpplication environment (network) that is carefully isolated from
outside connections by use of agtrong firewal, and in which dl client-to-server and server-to-server
network connections are encrypted using an Internet Protocol Security Protocol (IPSEC) VPN, will go
along way toward preventing externd attackers from even being able to access the gpplication itsalf.
Also, SSL and hypertext transfer protocol secure (HTTPS) encryption of Web transactions tunneled
through that IPSEC V PN-encrypted network will help to thwart both resourceful attackers who
manage to break through the VPN protection, as well as mdicious insders.

Aswith dl IA protection mechanisms and DID layers the need for a given protection mechanism or
layer must be driven by the assessed risk for the gpplication in the specific environment in which it will
operate. If the gpplication is being developed for use in multiple different environments, it should be
designed to be configurable to support the varying levels of security it may require in eech operating
environment or, if thisis not possible, it should be designed to be secure in the highest risk of the
intended target environments).

3.2 SECURITY-AWARE DEVELOPMENT

Security engineering of a software gpplication should not be viewed independently from the rest of the
gpplication engineering life cycle. According to Andrew Jaquith of @stake in his February 2002
research report, “ The Security of Applications: Not All Are Created Equd,” the overwheming
difference between secure applications and insecure gpplicationsis the use of superior development
practices by the developers of secure gpplications when specifying, designing, coding, and deploying
their gpplications. Good development practices, according to Jaquith, are more important than any
security advantages bestowed by the choice of programming language or COTS software components
such as Web servers, database servers, and middleware used in the gpplication—d| of which can be
used in either a secure or insecure manner, but which are more likely to be used securely if the overdl
gpproach to development is security aware.

What follows are descriptions of security-aware development practices that will help strengthen rather
than imperil gpplication security.

3.2.1 Use a Security-Oriented Development Process and M ethodology

The software development process and life cycle methodology you use can go along way toward
hel ping ensure that the gpplications you develop are secure.

17
FOR INFORMATIONAL PURPOSES

Draft

The Information Assurance Technical Framework (IATF) Release 3.0 (September 2000), published
by the Nationa Security Agency’s Information Assurance Solutions Technica Directors, describes an
Information Systems Security Engineering (1SSE) process that can be adapted to serve asa
methodology for guiding a secure software engineering effort. IATF defines the | SSE as the process for
addressing the user’ s information protection needs within the systems engineering, systems acquisition,
risk management, certification and accreditation, and life-cycle support processes. The mgjor ISSE
systems engineering activities recognized by the IATF are asfollows:

1. Discover needs of the mission or business; Determine the usar's mission needs, rd evant
policies, regulaions, and sandards in the user environment

2. Define system functionality: Define what the sysem is going to do, how well the system must
perform its functions, and what the externd interfaces for the system are

3. Design the system: Congtruct the architecture; do specification of the design solution

4. Implement the system: Procure or produce, and integration of al components for the designed
system

5. Assess effectiveness. Examine two mgor factors: (1) does the system meet the needs of the
mission and (2) does the system operate in the desired manner of the mission organization?

The ISSE process is intended to be the subprocess of the overall systems engineering process that
focuses on informetion protection needs, and which idedlly occursin pardld with the sysems
engineering processes. | SSE supports the evolution, verification, and vaidation of an integrated and life-
cycle balanced set of system product and process solutions that satisfy customer information protection
needs. The ISSE process dso focuses on identifying, understanding, and containing information
protection risks.

Another methodology that addresses the development processis International Standards Organization
(1SO) 17799, “Information Security Management Certification.” It includes a section on system
development and maintenance that discusses, anong other topics of interest (including security in
gpplication systems), security in the development and support processes for applications. The objectives
of thissection of 1SO 17799 areto

Ensure that security is built into operationd systems

Prevent loss, modification, or misuse of user datain application systems

Protect the confidentidity, authenticity, and integrity of information

Ensurethat I'T projects and support activities are conducted in a secure manner
Maintain the security of application system software and data.

o bk 0w N PE

Also of interest isthe Systems Security Engineering Capability Maturity Modd (SSE-CMM), discussed
in Section 3.2.1.1 below.

18
FOR INFORMATIONAL PURPOSES

Draft

Numerous commercid and government organizations have produced and published software assurance,
software risk management, and secure software engineering and secure devel opment methodologies
(see Appendix B). By and large, these methodol ogies focus on the backend of the life cycle, that is, the
certification and accreditation process, and ignore or only lightly touch on the front end of the lifecycle:
the specification, design, and development of secure systems. The DoD Information Technology
Security Certification and Accreditation Process (DITSCAP), for example, provides a thorough
approach to the certification and accreditation of systems, but it provides nothing in the way of a
methodology for developing those systems. The Common Criteria (CC), too, represents an extremey
detalled, extensive set of criteriaand processes for determining the security of the finished product, but it
does not provide any kind of guidance on the best way of developing that finished product to ensure
that it will satisfy the CC's evaduation criteria

This sad, these methodol ogies can be very useful both in helping define the security requirements—
particularly the assurance requirements—for the security mechanisms and cgpabilities of the Web
gpplication, and in evauaing any development methodologies or adapting a methodology. The result
would be to ensure that the methodology used is fully consistent with and supportive of the test,
assessment, and documentation needs of the eventua accreditation and evaluation process that the
goplication will have to undergo.

3.2.1.1 SSE-CMM

Recently, the Software Engineering Ingtitute’ s Capability Maturity Modd was used as the basis for
defining the new SSE-CMM. The National Security Agency (NSA) began the effort to develop a
CMM for security engineering in 1993 and eventualy enlisted over 50 government, industry, and
academic organizations to develop the SSE-CMM and its gppraisa methodology.

Just asthe SEI CMM isintended to help organizations control the processes they use for developing
and maintaining software, the SSE-CMM provides guidance on how to gain control of the processes
specificdly involved in developing and maintaining trusted software. The SSE-CMM should enable
organizations to improve their trusted software devel opment processes and capabilities and to evolve
toward a culture of security engineering excellence.

The SSE-CMM can aso be used to assess devel opers of trusted software to estimate their level of
ability, and to provide developers, vendors, and integrators with a clear picture of their current
processes, their strengths and weaknesses, and needed areas of improvement. Use of the SSEECMM
should make it possible to smplify process for certifying and accrediting trusted gpplication components
by incorporating the necessary groundwork throughout the development life cycle that will encourage
and ease development (and documentation) of accreditable systems. In addition, its use should make it
easer to quaify and rank bids during the acquisition of third-party trusted components to be used in
goplications.

19
FOR INFORMATIONAL PURPOSES

Draft

3.2.2 Adopting an Effective Security Philosophy

“That which is not expresdy permitted is forbidden.” Thisisthe policy that you should follow when
developing gpplications. If usng athird-party software module, disable (and if possble remove) dl
cagpabilities of that module that you are not expresdy intending to use. When writing your own code,
write processes with only one entry point and one exit point, and exclude from the run-time environment
al software libraries, routines, and others that you do not explicitly cal from your gpplication.
Furthermore, assgn only the absolute minimum of privileges to your gpplication processes that they
need to access the data or call the processes they need.

3.2.3 Planning the Development Effort Realistically

The application development project manager should write and implement a software development plan
that includes both a contingency plan that addresses wordt-case scenarios, and a development schedule
that provides adequate time for disciplined software development, testing, and the inevitable ddlays
caused by unanticipated problems.

3.2.4 Security Quality Assurance Throughout the Life Cycle

Thorough security quaity assurance throughout the software life cycle will help guarantee the
correctness and effectiveness of the security controls used by the application. If your development
organization has no dedicated security quaity assurance team, an ad hoc team should be assembled
within your software qudity assurance organization, to independently assess the application throughout
its development life cycle. Thisteam will identify, track, and provide developer guidance to diminate the
gpplication’s security defects as early in the life cycle as possible.

3.2.5 Accurate, Complete Specifications

It can be difficult to determine whether an gpplication security vulnerability sems from afaulty
specification or faulty implementation. Software requirements and design specifications are notorioudy
vague and often result in poor implementation decisions. Specifications are dso too often silent about
how to address and avoid known security problems.

The firgt step in security-aware development isto write a detailed, accurate software requirements
specification that identifies what the gpplication needs to protect (such asdataand configuration files),
from whom, and for how long. The requirements stated in the application’ s requirements specification
should reflect, not conflict with or ignore, the organization’s gpplication, data, network, and operationd
security policies. Part of the process of writing the requirements specification is identifying al policy
datements that are relevant to the particular application being specified, and dong with the interpretation
of those policy statementsinto requirements statements that describe the specific ways in which the
gpplication must behave, in order to comply with policy.

After the requirements specification is gpproved, andyze the requirementsit contains, and definein the
gpplication’s design specification the technica security architecture, controls, and functions, include

20
FOR INFORMATIONAL PURPOSES

Draft

details such as how each control and function should operate, its interfaces, and the data it inputs and
outputs that must be incorporated into the gpplication to satisfy dl the specified requirements.

An effective, accurate design specification will make it easer to pinpoint potentia security vulnerabilities
in the design early in the development life cycle, and it will enable you to make proactive desgn and
implementation decisons that can a best prevent, and a least minimize and congtrain the impact of,
those vulnerahilities. Thisis amuch less expengve gpproach than waiting to detect and address the
goplication’s vulnerabilities reactively during testing.

Update the software specification documents throughout the gpplication’s development life cycle, every
time the gpplication requirements, design, or implementation changes. Thiswill help guarantee that the
developers who maintain the gpplication will have an accurate, up-to-date picture of the software they
are responsible for keeping secure,

3.2.6 Secure Design

Software that does not perform correctly is not secure. But application security is achievable only when
you truly understand the gpplication you are building and carefully consder the following:

Environment in which the application will run
Application’ s input and output behavior

Filesand data it uses

Argumentsit should recognize

Signdsit should detect

Nature of itsinterfacesto other gpplications and systems
All other aspects of the application’s behavior.

When designing the gpplication, list dl predictable errors that could occur during application execution,
and define how the gpplication will handle each error. In addition, address how the gpplication will
behave if confronted with an unanticipated error.

Before writing asingle line of code, write a comprehensive code specification in language thet is clear
and direct. In short, writeit in away that would enable you, if you were to suffer amnesia, to use the
document to continue your work on the gpplication without difficulty. Specificdly, make sure the
goplication’s design follows the guiddines that follow.

Congder the use of an gpplication development middleware framework to minimize the likelihood of
security problems being introduced through improper integration of gpplication components. See
Section 7.1 for information on application development middieware.

3.2.6.1 Minimize Functionality

If you follow the palicy of “That which is not expresdy permitted is forbidden,” applications should
contain only those functions they actudly require to accomplish their purpose. Do not smply include

21
FOR INFORMATIONAL PURPOSES

Draft

functions that will not be invoked, but which might be ussful & some later dete. In the interim, these
unneeded, unused functions may be discovered by attackers and exploited. Also, because no one
expected those functions to be used, they will probably not be audited, so the attackers can get away
with exploiting them undetected.

When designing the application, explicitly specify the actions that any piece of code will be dlowed to
perform. Do not write processes to perform actions willy-nilly, but limit your code to do the following:

1. Peform only the actions you expresdy define for it

2. Makeonly system callsto processes it absolutely needs to invoke
3. Executeonly onetask a atime

4. Initiate anew task only after the previous task has completed

5. Include only one entry point and one exit point (thisis true for the application as awhole, and
for each module and process within it)

6. Accessonly datait absolutely needs to successfully perform its tasks.
3.2.6.1.1 Minimizing Database-Related Functionality

Because Web clients (browsers) are untrustworthy, and because connections between browsers and
servers are often easily compromised by attackers—and specificaly because of the risk of SQL injection
attacks—it will dways be difficult and frequently impossible to establish and maintain ared trusted
connection between the client through the Web server and extending to the backend database. Y €, this
trusted connection is required to ensure the security of the backend database when it is updated by the
client,

For this reason, Web front ends to databases should be read only (query only), that is, designed to
submit and answer HTTP queries, but not to alow usersto directly submit SQL updates (i.e., write to)
to the backend database viathe Web front end. If users must be alowed to update a backend database
viathe Web front end, the Web front end should be developed so that it validates al HTML forms
submitted by the user. Thus, only valid data are accepted from the proper fiedldsin HTML forms. An
effective way to accomplish this validation isto trandate the user’ sHTML form (which contains the data
that will be used to update the database) into an extensible markup language (XML) update. Then use
standard XML APIsand COTS parsersto validate the update data before passing them to the
relaiond database management system (RDBMS) vendor-supplied resource access layer (between the
Web server and the backend database) by which the XML update will be trandated into SQL syntax
and submitted to the database.

All Web-originated database updates must be executed as transactions to preserve data integrity in the
database. For example, in a Java J2EE gpplication server, use the Java Transaction APl (JTA) with the

22
FOR INFORMATIONAL PURPOSES

Draft

J2EE server to atomize updates extracted from user-submitted HTML formsinto individud sef-
contained SQL database transactions.

NOTE: Java/Java 2 Enterprise Edition (J2EE), Enterprise JavaBeans, and Java
servlets are the standard technol ogies used on the Navy’s Task Force Web
(TFWeb) Enterprise Portal.

3.2.6.2 Minimize Component Size and Complexity

Use multiple amdl, smple, sngle-function application components instead of one large, complex
gpplication component that performs multiple functions. Each single-function component should be
atomic, so that it can disabled when not needed or found to be vulnerable or errored without affecting
the operation of other components. Moreover, atomicity and smplicity will make the components easier
to understand and document, thus making it easier to verify their security and correctness.

3.2.6.3 Minimize Trusted Components

Trustworthiness implies that something deserves to be trusted. Unfortunatdly, gpplication components
and input are too often trusted without first making sure they are truly trustworthy. In many cases, there
issamply no dternative except to trust certain components, particularly COTS components, without
proof of their trustworthiness.

For this reason, applications should limit trust to those components that are absolutely criticd to the
gpplication’s secure operation. Specificaly, the application should limit its trust to those very few
components that perform the gpplication’s security control functions (e.g., I1&A, access control and
audit). All other components should be treated as untrusted by the application, and the application
should be designed to minimize the potentid impact of any security breaches caused by those
components, and to ensure that the components have no access to security-critica information,
functions, or privileges.

Similarly, datathat come from application users should never be trusted by the gpplication. The
gpplication should be designed to vdidate user input to prevent erroneous or maicious input from
polluting the gpplication or otherwise causing a security breach.

3.2.6.4 Minimize I nterfaces and Outputs

Keep user interfaces as smple as possible. Provide only the functions needed, and make the interface
nonbypassable, that is, make it impossible for the user to get around the interface to directly access data
or protected functions. As noted in Section 3.1.4.4, applications should aways minimize the amount of
trust they place in the user and should never accept user input without first vaidating its correctness and
benignity.

23
FOR INFORMATIONAL PURPOSES

Draft

3.2.6.5 Avoid High-Risk Web Services, Protocols, and Components

Web services and application components that are the frequent subject of Computer Emergency
Response Team (CERT) and other vulnerahility reports, or which are smply widely known to be
problematic, should not be included in DoD Web gpplications. If ahigh-risk Web service or protocol is
absolutely required, it should be used only after having a security wrapper or execution *sandbox”
applied to it to limit the potentid damage it may incur if it misbehaves.

3.2.6.6 Disable or Remove Unused Capabilities and Resources

Unless afunction (within the gpplication) or resource (e.g., libraries or datafiles externd to the
goplication) isinvoked or used during gpplication processing, if at dl possble, disableit or removeit
completely from the application code and run-time environment. Unneeded functions and resources
represent potentia targets of attack. Narrow the number of available targets, and you reduce the
number of potentia attacks.

3.2.6.7 Separate Data and Control

Keep files created by the application should completely separate from programs executed by (or within)
the gpplication.

If the application absolutely must accept programs that are remotely downloaded, implement avery
restrictive sandbox in which the downloaded program is dlowed to run. Make sure the sandbox
prevents the program from bleeding into other areas of the gpplication’s execution environment.

If you mugt include auto-executing macros (i.e., macros that execute when the gpplication is loaded or
when the data are digplayed, or both) in files created by the application, fully test those macrosto
ensure that they do not create security vulnerabilities, and execute the macros in a“sandbox”.

Be aware that sandboxes are far from being a complete solution. They are easily exploited by hackers
and mdicious programs. For this reason, in addition to sandboxing, store al programsin separate files
s0 they can be blocked more easily if a sandbox vulnerability is discovered. Such separate program
storage has the added benefit of making it easier to cache and reuse the program.

3.2.6.8 Protect All Sensitive Transactions

All Web gpplications should use SSL/TLS (i.e,, trangport layering security) (SSL Verson 3.0or TLS
Verson 1.0) with gpproved cryptographic and key management agorithms to implement seamless end-
to-end session encryption of dl their network-based transactions in which sengtive information is
transmitted. In addition, Web applications should implement hash or digita sgnature to ensure the
integrity of transmitted data. \When necessary, the gpplication should aso implement digital Sgnature to
ensure accountability (through nonrepudiation) of transmission, manipulation, and receipt of transmitted
data

24
FOR INFORMATIONAL PURPOSES

Draft

3.2.6.9 Protect Sensitive Data at Rest

The application should ensure the safe, secure handling of sengitive data a rest aswell asin trangit. This
protection includes confidentidity, integrity, and availability protections. The mechanisms for protecting
data at rest include the underlying access controls of the Web server or backend database in which the
data are stored. In Situations where those access controls are considered inadequate to protect the data,
encryption of the data before storage may be implemented to augment the access controls.

3.2.6.10 I nclude Trustworthy Authentication and Authorization

Include rediable, trustworthy user authentication and authorization. Do not use Web server basic
authentication without so usng HTTPS and SSL/TL S to create an encrypted pipe for transmitting
passwords or session 1Ds over the network. Also make sure the application ensures that the
passwords, encryption materia, and whatever ese it uses are adequately protected when at ret (i.e,
stored on the Web server).

3.2.6.11 Always Assume the Operating Environment IsHostile

Always assume that the application will run in the most hostile environment possible, and codeiit to
protect itsdlf. That way, if the application is ever ported to another system or moved to operatein
another environment, or if some part of the infrastructure (or the application’s own middleware or
platform) undergoes an upgrade that introduces vulnerabilities not found in the current verson, the
gpplication will not suddenly become vulnerable due to now- obsol ete assumptions about a safe or
protected environment.

Security mechanisms in the operating environment should be seen only as an additiond layer of
protection around the gpplication (i.e., DID); they should never be considered as replacing the need for
the gpplication to protect itself.

In addition to tending to the network and platform layers of security, implement an gpplication layer of
DID, so that the gpplication never becomes vulnerable due to reliance on a single protection mechanism
in its surrounding infrastructure or underlying operating platform. For example, write a PK-enabled
gpplication so that, were underlying PKI to fail, the application would shut down (in an orderly, secure
manner) rather than continue to operate without cryptographic services. Thus, the failure of the PKI |, as
the result of adenid of service attack, for example, could not compromise the application itsdlf or the
datait processes.

3.2.6.12 Always Assume that Third-Party Software | s Hostile

Beware of third-party (both COTS and open source and other public domain) software and common
software libraries. Never trust anyone else' s software without adequate proof of its rdiability and
security. Thoroughly review the specifications of third-party products before using them, and thoroughly
test any third-party components that will perform any trusted (privileged) functions within or on behaf of
your gpplication, such as encryption, authentication, and sendtive data access. Follow the guiddinesin

25
FOR INFORMATIONAL PURPOSES

Draft

Appendix C when sdlecting third- party software, particularly software that implements security-senstive
functions.

Write your gpplication to drictly validate al inputsit receives not just from users, but from any externa
processes (i.e., processes in third- party components), to ensure that the input data cannot induce a
buffer overflow in the gpplication. Even if your gpplication code is written in alanguage thet is not
vulnerable to buffer overflows (e.g., Java), be very careful about any C or C++ libraries caled by your
application, because the library routines may be susceptible to buffer overflows even if your own code
modules are not. Research the security track record of the third-party modules, as well as the C/C++
library routines you plan to use. For example, check for CERT and other reports of vulnerabilities and
hacker atacks involving these modules or routines.

3.2.6.13 Never Trust Users and Browsers

All Web gpplication designs should be predicated on the understanding that neither user input nor
browser operation istrusworthy. All sengtive functions, including extensive user input vadidation, should
be performed by a trustworthy server gpplication, and not in the browser.

3.2.6.14 Require and Authorize No Privileged Users or User Processes

Do not write the Web gpplication to assume or require that it will be granted anything more than
absolute minimum (user) privileges. If atrusted process within the gpplication must be granted devated
privileges, do not alow this processto be invoked by auser or user-controlled process. Isolate dl
privileged processes from any potentia control or compromise by users. The exception may be the
inddlation and configuration routines that enable the administrator to configure the application’sinitid
operating state, any functions involved with configuring, reading, and archiving the gpplication’s event
logs. Write the gpplication so that its administrator functions can be performed only by a strongly
authenticated administrator and cannot be accessed (or even seen) by other users. See Section 4.3.3
for adiscusson of least privilege in applications.

3.2.6.15 Do Not Rely on Security Through Obscurity

Do nat rely on security through obscurity. Hiding information such as security data and configuration
detalls may seem like an effective subterfuge, but it is not the same as adequatdly protecting that
information. Security through obscurity is predicated on the hope that no one will accidentally or
intentiondly discover the sengtive information-a faulty assumption at best, and disastrous a worst.

Obfuscation may be effective when and only when used in conjunction with proper security protections,
to help discourage certain types of attacks by unsophisticated nuisance hackers and so-caled script
kiddies (versus sophisticated attackers and e-warriors). But as atrue security measure, obfuscation is
unrdiable, ineffective, and frankly should be unnecessary if the required security protections are
implemented correctly.

A specific area where obfuscation is often promoted isin the instance of Java programs, which due to
their smplicity and portability have proven susceptible to reverse engineering. Java bytecode

26
FOR INFORMATIONAL PURPOSES

Draft

obfuscation is often promoted as a protection againgt this type of reengineering attack. However, in the
DoD environment, the DoD mobile code policy requires that al Java code be digitaly signed before
release, and that the code signature be vaidated by the user before the code can execute on his client
system. This code signature and validation not only enable the user to verify that the code comes from a
trustworthy source and has not been tampered with, but they pretty much diminate the possibility that
the Java code could have been captured and reverse engineered before being served to the
unsuspecting user. At least, the code signature and validation provide the user with an opportunity to
explicitly decide whether to run any Java code on which a signature has not been gpplied or validated,
or both. So athough Java bytecode obfuscation may seem like a good protection measure, it is
superfluous in aDoD Web application environment.

3.2.6.16 Be Accurate in Your Assumptions About the Underlying Platform

When the application has to rely on or use security features and services provided by the underlying
platform or operating environment, make sure that the assumptions you make about the operation of
those security features, and the gpplication’s interfaces to those features, are correct. If the gpplication
may be ported to unanticipated platforms, be sure that the gpplication has been written, and is
configurable, to handle differences in the security environment and services provided by the underlying
platform.

Whenever possible, take advantage of tools that enable the application to leverage the existing platform
and network security infrastructure.

3.2.6.17 Make Security Mechanisms Easy to Configure and Use

Make configuring the application’s security features as easy and clear as possible on both the server and
the client, including post indalation configuration. Make secure use of the gpplication as easy as
possible to prevent adminigtrators from taking short cuts or prevent users from attempting to shut off or
bypass security contrals.

Desgn dl user interfaces to gpplication security mechanisms (e.g., digital Sgnature and encryption tools)
to be easy to use, S0 that users areless likely to try to bypass those mechanisms and more likely to use
them correctly. Try to design the user interface to each mechanism to match the user’s mental image of
his or her godsin usng the mechaniam, that is, make their use intuitive. The same istrue of the
adminigrator’ sinterface: awdl-designed interface will reduce the likdihood of the administrator
incorrectly configuring the application’s security mechanisms.

3.2.6.18 Risk Analysis of Application Design

Before submitting the application’s design for review, perform a thorough risk analysis of the design.
Therisk andyss should identify dl potentid threets to the gpplication, and rank them according to
severity and potentia impact. It should identify any residud vulnerabilitiesin the gpplication’ s security
posture and identify the changes to the design required correct them. Findly, it should include an

27
FOR INFORMATIONAL PURPOSES

Draft

estimate of the cost of implementing each identified change. Note that a design defined by a security-
aware developer will belesslikdy to contain vulnerabilities to be reveded by the risk analysis.

3.2.7 Application Middlewar e Frameworks

The objective of application middleware isto create an gpplicationlayer framework that implements a
networking and security infrastructure that can remain consstent from one gpplication to the next. The
result can dso minimize the amount of custom-development and integration required to provide security
services, communications services, and other standard services that al applications need. Application
middleware frameworks are discussed at length in Section 7.1.

3.2.8 Restricting the Development Environment

Asthe development life cycle progresses, and the code moves into a preproduction environment where
accounts and permissions are managed properly, numerous problems may suddenly appear in the
software’ s operation. Those problems were not evident in the unrestricted early devel opment
environment because various functions were alowed to operate without any congraints in the

devel opment environment. For example, data that were read and write ble in the development
environment may no longer be accessible in the operationa environment because specific access rights
were never assgned to them. Access Control Lists (ACLSs) may be gpplied for the firgt time with
unpredictable results. Run-time errors may unexpectedly occur.

In adistributed gpplication, just identifying the root cause of problems originating from the sudden
gpplication of regtrictions will be achalenge, and that will add to the time it takes to debug and test the
gpplication. For thisreason, it is better not to develop code under the administrator or any other
privileged account on the development platform. Developing code unconstrained by access restrictions
alows the code to do anything, anytime. Although this makes it easier to write and test functiondlity, it
a0 prevents you from seeing the security impacts and implications of your design choices and the
functiondity you have implemented. Use of the administrator account aso prevents application isolation,
accurate testing, and accountability. As the ostensible administrator you have access not confined to a
specific gpplication, so you inadvertently overwrite other developers code and data, particularly if those
developers give ther files (or, in the case of databases, table names) names smilar to those you have
given to your files and tables.

Security-aware development means cregating and using application pecific accounts with rights and
privileges that reflect those that will be assigned in the operationa environment; in thisway, the
development environment will reflect redlity to the grestest extent possible. Of course, you may have to
refine these access rights over time, but if they are not defined in the firgt place, it will be impossible to
know how to refine them when it istime for the gpplication to be tested.

3.2.9 Writing Elegant Software

Elegant software is more correct, and more secure than other types are. What follows are some tips on
writing code in away that will yied degant software.

28
FOR INFORMATIONAL PURPOSES

Draft

3.2.9.1 Document First

As noted in Section 3.2.6, you should write the requirements, design, and code specifications before
writing asingle line of code. The proactive documentation of applicationsis not only a good
development practice, it isimperative for systems that must undergo certification and accreditation under
the DITSCAP or Director of Centrd Intdligence Directive (DCID) 6/3. Furthermore, after the
gpplication is documented, it should be implemented and coded to conform drictly to its design and
code specifications. Applications that do not match their specifications are incorrect and insecure by
definition.

3.2.9.2 Keep Code Simple, Small, and Easy to Follow

Such direction is particularly true for code that implements trusted, criticd, or otherwise sengitive
functions. Use structured programming, and avoid recursgons and goto statements that blur the flow of
control.

NOTE: Structured programming is a technique for organizing and coding programs
in which a hierarchy of modulesis used, each having a single entry and a single
exit point, and in which control is passed downward through the structure without
unconditional branches to higher levels of the structure. Three types of control
flow are used in structured programs: sequential, test, and iteration. The
fundamental principle of structured programming isthis: At al timesand under dl
circumgtances, the programmer must keep the program within hisintellectual grasp.

W I-known methods for achieving structured programming are: (1) top-down
design and construction, (2) limited control structures, and (3) limited scope of
data structures. Sructuring data for intelligibility means limiting the scope of
variables, explicitly declaring all variables, using meaningful data names, and
using hierarchical data structures.

Y ou will greetly reduce the likelihood of bugsin your code by reducing the amount of code you write.
Elegant software is efficient software: it implements each function by using the minimum number lines of
code possible. In usng eegant software, also remove dl unnecessary software from the code base.
Avoid ambiguities and hidden assumptions. Also remember: the smdler and smpler the code, the easier
the application will be to accredit.

3.2.9.3 I solate Security Functionality

Place security-critica functionality in separate modules that are Smple, are precise, and have been
proven to operate correctly. Write al modules—even smal ad hoc scripts—so that they do not rely on
any globd date; this measure will avoid unnecessary complexity and ensure that the modul€ s flow of
control can be tracked.

Use only precisely defined interfaces for communication between those modules. These interfaces
should not directly reference internd variables.

29
FOR INFORMATIONAL PURPOSES

Draft

As stated earlier, the application’s design should condirain trust to only avery few componentsin the
goplication, rather than digtributing it widdy across numerous components. However, this minimization
of trust should not be taken to its extreme. Trust should not be completely centrdized into asingle
component—an extreme that is contrary to the idea of DID—because doing so creates a single point of
falure and asngle high-vaue target for attack.

3.2.9.4 Be Careful with Multitasking and Multithreading

Unless the gpplication program runs on a multiprocessor machine, write programs to be single-tasking
(i.e., to do only one thing at atime) unless there is a good reason for them to multitask. Multitasking and
multithreading programs in operating systems that support multitasking and multithreading can improve
gpplication performance, but they aso increase gpplication complexity. Complexity is the enemy of
security because it makes the application harder to understand, to andyze, and to verify in terms of
security and correctness. Multitasking dso increases the risk of deadlocks, which occur when two tasks
or threads both stop executing and wait for one other to terminate.

If your program will do multitasking or multithreading, carefully analyze its operation to be sure that the
smultaneous processing of tasks and threads does not create conflicts in usage of system resources
(such asmemory or disk addresses). Synchronize the tasks and threads to prevent such conflicts. As
with al structured programs, write each task to contain only one entry point and one exit point.

3.2.9.5 Use Secure Data Types

Be careful about what data types your program uses, especidly in its interfaces. For example, sgned
and unsgned vaues are tregted differently in many languages (such as C or C++). Consider the security
implications of each data type you use, and avoid data typesthat are likely to increase the vulnerability
of datato compromise.

3.2.9.6 Reuse Proven Secure Code

Whenever possible, reuse previoudy debugged, tested, security-vaidated gpplication components and
software libraries, instead of writing new software. Use and reuse accredited or evaluated trusted
components whenever possible. If acomponent has not been accredited or evauated, it should
undergo athorough risk andys's, including some leve of security testing, before being accepted for use
in the application.

Indl cases, thoroughly andyze the code-whether it is GOTS, COTS, or open source, and whether
accredited or not—to determine whether the code includes assumptions about its runtime environment
that are not true in your own gpplication’ s operating environment (such as whether it makes system cdls
to nonexistent routines or programs or includes environmenta variable settings that are in conflict with
your run-time environment). If any such assumptions exi<t, determine whether the code can be cost-
effectively rewritten to change or diminate these assumptions, or dternately, whether a security wrapper
can be gpplied to isolate the reused module o that its assumptions will not affect the overdl

30
FOR INFORMATIONAL PURPOSES

Draft

gpplication’s operation. If such changes cannot be made cost-effectively, the code is not a good
candidate for reuse.

3.2.9.7 Use Secure Programming Languages and Development Tools

Choose a programming language that supports good coding practices, that does not have lots of
inherent vulnerabilities, and that can be used securdly. As popular asthey are, C and C++ are probably
the least secure languages that you could use, particularly when compared with Java, Python, and other
languages that are inherently resistant to buffer overflow. Investigate these dternatives and, if at dl
possible, use them.

If for performance or integration reasons, you must use C or C++ for some or al of the gpplication, be
scrupulous about coding the necessary vdidations to avoid buffer overflows; the language itsdlf will not
automaticdly protect againg buffer overflow. Whatever language you use, avoid dl cdls and commands
that are known to have security problems (see Section 3.2.9.8.1), and avoid the language s more
obscure, unfamiliar festures.

Also, use development tools that force you to follow good software engineering practices, for example,
that force you to create documentation before writing code and that highlight bugsin your code so that
the code can be rewritten to diminate them.

3.2.9.8 Call Safely to External Resources

Sdf-contained application programs are rare. Most programs call out to system:-level programs or
middleware. To ensure that calls from gpplication programs to other programs are done securely,
gpplications should be implemented with the following limitations.

Nearly every programming and scripting language alows the use of system-commands to pass input
(commands) to the underlying operating system. The operating system executes the given input and
returns its output to the application aong with various return-codes indicating whether the requested
command was executed successfully or not. In Web applications, syssem commands are often used for
file handling (delete, move, and copy), to invoke system programs such as sendmail or file transfer
protocol (FTP), or to cal operating system tools to modify gpplication input and output (i.e., filters).

3.2.9.8.1 Use Only Safe System Calls
To avoid availability and other security problems, before usng any system cal take the following steps:

1. Check the arguments passed to operating system functionsin the cdl to be sure they contain the
expected parameter values.

2. Check dl return codes from system cdlls (in C and Perl). If acal fals, check the errno variable
to determine why it failed; if the reason is unexpected, write the application to log the
unexpected vaue, ddete dl temporary files, and then gracefully terminate itsdlf. This gpproach

31
FOR INFORMATIONAL PURPOSES

Draft

should help in tracking down any programming bugs or security problems that might be causing
the fallure.

3. Write UNIX applicationsto cal f or k() tolaunch new processes. Do not cal the less secure
viork().

Refer to Appendix D for system cdlsto be avoided in individud programming languages. Many of the
following recommendations dso form the basis for the input vaidations your application should perform
on user-supplied data. See Section 5.3 for information on how to implement input vaidation.

3.2.9.8.2 Call Only Trustworthy Library Routines and Interfaces

Before using any library routine or programmetic interface, read its specifications and test it to ensure
that it performs as specified and does not violate system or application security. If any routine or
interface is found to be insecure, that is, untrustworthy, write or obtain a new, trustworthy version of the
routine or interface to replace the untrustworthy verson. If you doubt that future versions of a currently
trustworthy routine or interface might not be trustworthy, or if aroutine or interface that is safe on one
platform cannot be guaranteed to be equaly safe on the other platforms on which it must run, replace
the questionable routine or interface with anew routine or interface that isimplemented securdly.

3.2.9.8.3 Accept only Valid Values in Parameters

The gpplication cdl to another program should permit only vaid, expected vauesfor dl parameters.
Many library cdls and commands cdl lower-leve routinesindirectly by caling the shell. However,
passing in parameter characters that happen to be shell metacharacters can bring unexpected and
undesirable consequences.

3.2.9.8.4 Exclude Metacharacters

Many programs, including command line shdls and SQL interpreters, include metacharacters in their
input. These metacharacters are interpreted as actionable ingtructions, rather than as passive data:
metacharacters may indicate commands, or delimiters intended to separate commands or data. If the
goplication program invokes an externa program that handles metacharacters, the application code may
be subject to hacker insertion of metacharacters as a hijacking mechanism. Refer to Section 5.3.4.3.2.

3.2.9.8.5 Include Full Pathnames Only

Application calsto externd programs, as wel as other gpplication referencesto files, should aways
Specify the full pathname of the external program and file (e.g., /usr/bin/sort), thus diminating the
possibility of the gpplication caling the wrong program or starting from the wrong directory.

3.2.9.8.6 Use Only Interfaces Intended for Programs

Applications should call only externd programs and APIs intended for use by programs; applications
should not call interactive (user) programs or APIs to such programs.

32
FOR INFORMATIONAL PURPOSES

Draft

3.2.9.8.7 Validate All Data Returned from System Calls

System cdls that can return error conditions should be validated by the application to ensure that the
returned error conditions cannot be exploited to cause resource exhaugtion (e.g., viamultiple
smultaneous cdls from CGI scripts or other server programs). If the system itself cannot handle a
particular error condition gracefully, the gpplication must be written to fall safely when detecting thet
error.

3.2.9.9 Use Escape Codes with Extreme Caution
3.2.9.9.1 Command-Line Escape Codes

Application programs, especialy those with user interfaces, often include escape codes that perform
functions such as invoking the command line. For example, some command line mail programs, such as
mail and mailx, use the ~ (tilde) as an escape character that can invoke a number of commands.
Interactive programs, such as vi, emacs, and ed on UNIX systems, often include escape codes that
alow usersto run arbitrary shell commands from within their sessons.

Escape codes should be included in the gpplication only if the program being escaped to is trustworthy.
The problems inherent in escape codes in interactive programs can be avoided by having the gpplication
cdl only to programs that are explicitly intended for use by other programs.

3.2.9.9.2 Device Escape Codes

A particular set of escape codes, those in the Hayes modem command set, may be inserted into
programs to launch denid of service attacks against modems or to connect a user to a different modem.
If the application issues acdl that controls a modem (or another lower-layer device or emulator), all
escape codes for that device should be excluded from the application. Smilarly, if the application
invokes atermina interface, it should exclude any escape codes for termina types, such as VT100,
because such escape codes may alow denid of service or other attacks that involve sending untrusted
data directly to atermind screen. If dataare displayed to users via (Smulated) terminas, those data
should exclude any control characters (i.e.,, characters with vaues less than 32) if the user receiving the
data cannot be proven trustworthy.

Emulated terminds, caled tty or ttyp in UNIX, an abbreviation of the word tel etype, should be writable
by their owners. The other write permission should not be set for emulated terminas, nor should the
group write permission. In addition, the user group for the ttyp should contain only the owner
implementing the user-private group scheme.

3.2.9.10 Maintain a Consistent Coding Style

Maintain a condgstent coding style throughout the gpplication, regardless of how many developers
actudly write the code. This includes the gppearance. For example, have dl developers use the same,
consstent gpproach to indenting lines of code. Individudity of styleis not a desirable qudity in
application code.

33
FOR INFORMATIONAL PURPOSES

Draft

3.2.9.11 Find and Remove Bugs

Many security problems are caused by programming errors. But also recognize that, from a security
gtandpoint, there is little difference between a software fallure caused by a run-time error (bug) and a
software failure caused by a user error—except that the latter islikely to be the result of a poorly
designed or errored user interface. Be careful about how user interfaces are designed and implemented.
As noted earlier, do not make them counterintuitive or overly complicated.

Debug application code carefully and thoroughly before testing, and develop test plans and scripts that
will exercise the application thoroughly, increasingly the likelihood thet any resdua bugs will be
discovered. Testing of security-sengtive functions and modules should involve penetration testing as well
as correctness testing (see Section 3.10). Removing bugs to make programs more secure has the added
benefit of making them more reidble as wll.

3.2.9.12 Writefor Reuse

Comment on, document, and test al code you do write with reuse in mind. That is, make the code's
purpose and functiondity obvious to other developers who may consider reusing it.

3.2.9.13 Keep Third-Party Component Fixes and Security Patches Up to Date

No matter how secure your development practices are, you cannot prevent vendor-induced
implementation vulnerabilitiesin COTS software for which you do not have the source code. Therefore,
one of your secure development practices must be to keep al third-party products up to date in terms
of gpplying bug fixes and security patches.

That said, generd functiond updates to third-party software may actualy introduce new security
vulnerabilities. Do not update software Smply for the sake of being current if the new functiondity is not
needed by or will not be used by your application.

If the vendor plans to discontinue maintenance of an older product verson including no longer providing
fixes and patchesin response to customer-identified problems, you need to discuss thiswith the
procurement officer or contracting officer who established the origina contract with the vendor. To
determine if anything can be done to influence the vendor to continue supporting the software for you, or
to release the source code for the old version to you. Otherwise, if you must use the updated software
to continue getting patches and fixes, obtain a copy of that software and analyze and test its new
features thoroughly to discover any security problems they may contain or introduce to your gpplication,
and encourage the vendor to fix these problems before you adopt the new software. If the software is
found to contain security vulnerabilities that are too greet to be tolerated, you may need to find
functionaly comparable but more secure software from another vendor.

3.2.9.13.1 IAVA and Security Patches

In compliance with the Deputy Secretary of Defense’s 30 December 1999 Information Assurance
Vulnerahility Alert (IAVA) policy memorandum, DISA established an IAVA database of dert

34
FOR INFORMATIONAL PURPOSES

Draft

natifications pertaining to vulnerahilities discovered in DoD sysems and an IAVA Implementation
Process to provide a means for the CinCs, Services, and Agencies (C/SA) to report discovered
vulnerabilities, to receive the latest vulnerability information reported by others, and to identify the latest
available security patches for common operating environment (COE)-compliant products and systems.

Although the primary intended audience for the IAVA information is syssem administrators, asa
developer, you should take advantage of IAVA process as you design and implement your Web
goplications, to ensure that the versons of third-party products used in your gpplication are absolutdy
up to date in terms of available security patches. Please refer to

3.2.9.14 Common Logic Errorsto Avoid

Many logic errors arise from design flaws. Some are the result of poor implementation. Useful
techniques for detecting common logic errorsinclude

Defensve programming language design
Compiler checks
Formd methods for anayzing the application program’ s conformance to its specifications

Static checking, using aforma method, an informa method, or a code- scanning tool such aslint
or LCLint (Appendix C lists severd such tools). Strong type checking and forma static
checking expose both consequentia (securitywise) and inconsequentid errors. It isup to the
developer to distinguish between the two and to treat the security-relevant errors appropriately.

3.2.9.14.1 Inconsistent Naming

A common source of vulnerabilitiesin gpplication code is the use of diases, pointers, links, caches, and
dynamic changes without reinking. To reduce the likelihood of problems

Treat diases symmetricaly

Use symbalic naming and dynamic linking
Use globdly unique names

Clear caches frequently.

3.2.9.14.2 Improper Encapsulation

Incorrect encapsulation can expose the internals of procedures and processes by revedling (lesking)
sendtive information or externaly inducing interference. Correct encgpsulation is achieved through a
combination of

Effective sysem architecture
Effective programming language design

35
FOR INFORMATIONAL PURPOSES

Draft

Effective software engineering
Static checking
Dynamic checking.

3.2.9.14.3 Asynchronous Consistency

Timing and sequencing errors, such as order dependencies, race conditions, synchronization, and
deadlocks, can threaten application operation. Many timing and sequencing errors are caused by
sharing of sate information (particularly red-time or sequence order) across otherwise digoint
abgtractions. Applications should use the following techniques to avoid such errors:

Atomic transactions
Multiphase commits
Hierarchica locking strategies.

3.2.9.14.4 Other Common Errors
Other common logic errors to be avoided include these:

Off-by-one counting
Omitted negations
Absolute values.

3.2.10 Security-Awar e Testing

Application functiona security testing and penetration testing should be performed on the same platform
that has been locked down according to FSO STIG, COE, GCCS, NSA, and any other relevant
security guidelines, and generdly configured asit will be when deployed operationdly. To the grestest
extent possble, the test environment should dso duplicate the intended operationd environment, in
terms of the surrounding security infrastructure. Many systems have been tested on out- of-the-box
platform configurations only to later fail to operate after deployment when security parameters and
ownership/access protections on certain files were set to their proper operating values. The result has
been the need for expendve security retrofits, or the insecure configuration of the platform so that the
gpplication can run — neither Stuation being acceptable.

3.2.10.1 Rules of Thumb for Security-Aware Testing

The objectives of security-aware testing are to verify that the software performs without errors,
unintended interruptions, or failures, and that the gpplication cannot be easily compromised. Here are
some generd guiddines to follow when testing your gpplication:

1. Think like a hacker. Devise atest plan composed of hacker-like strategies and scenarios with
which to attack the application. Include tests that attempt to cause buffer overflows, race

36
FOR INFORMATIONAL PURPOSES

Draft

conditions, flood conditions, and other problems, aswell astests that involve entering obscure
command line options.

2. Submit unexpected input to the program. Note how the program reacts, particularly whether
it manifests any vulnerabilities or anomdies that could be exploited by a hacker.

3. Sresstest the application with junk input. Randomly generate and send long strings of data
in an attempt to overflow every single input field that gets parsed by a certain protocol. Observe
whether overflow actudly occurs, or whether the gpplication handles the junk input correctly.

4. Delay the program between two system calls. Again note what happens, and whether an
exploitable vulnerability or anomaly is reveded.

5. Include independent verification and validation (IV&V) in your test plan. Subject the
application to independent testing by outsiders who have no preconceived expectations of how
users will interact with the application, or how the application itsalf will perform.

6. Verify compliance with the design. Just as you ensured that the design satisfied the stated
requirements, ensure that the software implementation conforms with the design.

For an overview of the issuesinvolved with software testing, refer to

3.2.10.2 Code Reviews

Periodicaly review your source code in progress throughout the development life cycle to identify and
correct any obvious problems as early as possible and definitdy before submitting the code for further
testing. Thorough code review includes these measures

1. Reviewing the source code for the potentid vulnerabilities identified in the software risk
andyss.

2. Manually reverse engineering the trusted modules of the program by carefully reading the
disassembly of the module code, to reconstruct the program flow and spot programming errors
and potentid vulnerabilities nvestigating suspicious code constructs while reverse enginesring
the code. Look out for calsto functions that are know to be the source of common
programming errors and vulnerabilities. Review these cdlls and flag any that seem to cause
security problems. For example, flag the use of any cdl inthe C/C++ scanf () family of cdls
if it is used to send data to a string without first specifying the maximum length of thet string.
Using a code scanner to identify common security error conditions, such as buffer overflowsin
Cand C++.

4. Questioning all assumptions and choices made in the code, such as choices related to trust of
data received from externa users or processes.

37
FOR INFORMATIONAL PURPOSES

Draft

5. Checking the correctness and vdidity of al command line arguments, system call parameters,
and return values.

6. Writing the code to be testable. The following article from the March/April 2002 issue of
| EEE Softwar e magazine describes what the authors call “test-firg desgn” and which includes
severd good recommendations for writing testable Web application code:

7. Subjecting the code to peer reviews throughout the development cycle. Allowing eyes other
than your own to peruse your code may reved problems or ambiguities early on that you may
have overlooked and spare you from having to rewrite the code more extensvely after testing.
After the peer review, walk through the code with the devel opers who reviewed it, and explain
to them what each component and each part does. Explaining why something isdonein a
certain way can surely help you to discover logic errors and lead you to reconsider why you
implemented the code in a certain way.

3.2.10.3 Source Code Security Audits

Source code security audits are best performed by the security expertsin your development team, the
organization’ s risk management or accreditation team, or an expert independent consultant. These audits
should include both white hat and black hat audits.

3.2.10.3.1 White Hat Audit

White hat auditing reviews every line of code in the gpplication, identifies fixes for every discovered
problem, and as a result, leaves the program in a more secure, stable state. The audit continues after
each vulnerability isfound and documented. It should be repested whenver the software is updated.

3.2.10.3.2 Black Hat Audit

Black hat auditing is performed with a hacker mentdity. It looks at the code specificdly to find the kind
of vulnerabilities through which hackers often attempt to compromise application security. Only the
suspicious parts of the code are reviewed, and the audit is repeated after al discovered vulnerabilities
arefixed.

3.2.10.4 Penetration Testing During Development

Penetration testing of an application in development can do 1IV&V of security trusworthiness of the
gpplication and the strength of itsincorporated and underlying security protections and mechanisms.
Penetration testing can help find security flaws and complements security functiona testing, which
confirms the correct behavior of the gpplication’s specified security features, functions, and capabilities
(i.e, “what isthere’) by testing “what is not supposed to be there.” There are no specifications for flaws
in the gpplication’ s security implementation or other resdua vulnerabilities, so such flaws must be
discovered dmost haphazardly. Still, arigorous penetration testing methodology is likely to revead more
rather than fewer critical security flaws.

38
FOR INFORMATIONAL PURPOSES

Draft

Penetration testing should be a part of the overdl security plan prepared in the early phase of the
development program, for example, by the system requirements review (SRR). Penetration testing
should not be part of acceptance tests, which are designed to demonstrate that the application meetsiits
specifications. Whereas, security functiond testing can be included in acceptance tests, penetration
testing is more useful as a design and implementation vaidation tool while the sysem is till under
development,. IT would begin as soon there is solid design evidence such as the architectura andysis
of the application presented at preliminary design review (PDR), the flaw generation report presented at
critical desgn review (CDR), and code test results from the system integration testing. The main
objectives of penetration testing during development are (1) to determine the likely leve of knowledge
and experience (sophidtication) an attacker would have to have to successfully compromise the
gpplication and (2) to identify additional security protections and countermeasures that could be
implemented to both significantly eevate the attacker’ s necessary level sophidtication and reduce the
potentia pool of attackers with the qudifications to succeed in compromising the application. In
addition, forma penetration testing may be required after the formal security test and evaluation
(ST&E), as part of the system’ s cextification and accreditation (C&A) requirements.

The gods of penetration testing should be clearly ated in test plans before testing begins. A
comprehensive penetration test plan identifies the object being tested and defines the sophigtication and
characterigtics of anticipated attacks to be smulated by the test. The smulated attacks should reflect the
results of the risk assessment of the gpplication. That is, isit more likely to be targeted by amdicious
indder, an externd amateur hacker, a hogtile country’ s infowarrior, or a cyberterrorist? The worst-case
assumption is dways a hodtile attack from authorized malicious users who exceed their authorizations.
Findly, the penetration test plan should define the limits and duration of the penetration test, that is,
when the test will be considered complete. The open-ended nature of flaw searching may conclude
when resources or testers are exhausted, or atime limit may be applied.

39
FOR INFORMATIONAL PURPOSES

Draft

40 IMPLEMENTING SECURITY MECHANISMS

4.1 PUBLIC KEY-ENABLING

PK -enabling for Web gpplications means implementing the PKI that will support use of the HTTPS and
SSL protocols that are the core of Web authentication and of confidentidity and integrity of detain
trangit.

SSL was designed to perform one-way authentication of Web servers to browsers, so that the user
would know that he was connected to the expected, trusted server. SSL Version 3 also servers
authentication of browsers (and, by implication, their users), through the SSL. mutud authentication
option that uses persond identity certificates for the user’ s authentication to the server. See 4.1.4 for
more information on PK-enabling of Web applications.

We recognize that SSL. does add a performance overhead to Web transactions that in some
applications may seem sgnificant. Depending on the Web protocol being used, the power of the server
hardware, and the network environment, SSL. connections have been observed to range from 2 to 100
times dower than unsecured transfer control protocol (TCP) connections. It iscritical, therefore, that
Web gpplication desgners be wel aware of the transaction performance requirements for their
gpplications and understand the relative impact on performance that SSL will add to each transaction;
deve opers should choose the protocol s they use accordingly, to minimize the performance impact of
SSL. Also, itislikely that not every transaction will need to be SSL secured. If atransaction does not
transmit senditive data, it probably does not need to be SSL. encrypted. In some agpplications, the need
for SSL may be limited to the authentication didogue. In others, SSL. may aso be needed to encrypt
downloading of Web pages that contain sensitive data, or to upload of user input forms. In environments
where the main threet is perceived to be external, and where infrasiructure countermeasures such as
VPNs, link encryption, and firewalls go some way toward preventing eavesdropping by outsders, it
may be adequate to transmit nonsengitive data without SSL encryption and limit SSL drictly to sendtive
transactions and data. However, if thereis any concern about an insider thregt, the need to protect the
gpplication must be weighed carefully againgt the need for optima performance. Findly, use of
hardware-based SSL accel erators should be consdered for gpplications and environments in which
SSL will be used to secure alarge number of transactions or in which significantly performance-affected
protocols must be used. Appendix C lists some SSL. hardware accel erators.

PK -enabling of non-Web gpplications, including legacy (and nonlegacy) backend systems interfaced
with by Web server applications, will enable them to perform authentication, encryption, and digita
sgnature, using the same PKI asfor the Web application. PK-enabling of nonWeb gpplicationswill
likdy entall use of aPKI toolkit. More information on PK-enabling of legacy applications gppearsin
Section 4.1.5.

NOTE: The encryption technology specified for DoD Web applicationsis the DoD
PKI. If an alternative encryption technology is desired, such as FORTEZZA in a
particular operating environment or for a particular application component, then

40
FOR INFORMATIONAL PURPOSES

Draft

a waiver must be obtained from and the choice of technology must be approved
by the DoD application’s owner and its accreditor; in all cases, the encryption
technology used in DoD applications must be approved by NSA.

4.1.1 PK-Enabling: A Definition

A quick set of definitions of PK-enabling may be helpful in understanding when and how public key
enabled gpplication security services should be implemented. Department of Defense (DoD) Medium
Assurance Public Key Infrastructure (PKI) Public Key-Enabling of Applications (29 September
2000) ligs the following specific functions that PK-Enabled gpplications must perform:

1. Accept and process a DoD PKI X.509 digitd certificate to support one or more gpplication
specific functions (digital sSignature, data encryption support, system or network access) that
provides security services

2. Include an interface to a hardware token supported by the DoD PKI

3. Coallect, store, and maintain the data required to support the use of signed datain a security
sarvice

4. Interoperate with the DoD PKI as verified by the Joint Interoperability Test Command (JTC)
Department of Defense Public Key Infrastructure Interoperability Generic Test Plan (Version
1.1, May 2001).

The specific security services for which an application may be PK-enabled include the following:

Authentication: With PK-enabling, the PKI replaces (or in some cases augments) the existing
authentication system based on username and password or |P address filtering, with an
authentication system that uses digita identity certificates as the authentication factor.

Confidentiality: PK-enabling alows the gpplication to use PKI technology, generdly in
conjunction with standard symmetric encryption, to encrypt datain trangit or at rest, or both. In
virtudly dl implementations of PK-enabled data encryption, the PKI is used to securely
distribute the symmetric secret keys over unprotected networks, it isthe symmetric keys that
will be used to encrypt the data. The security of the key distribution is achieved by using an
asymmetric (PK1) cryptokey pair (public and private keys) to encrypt the symmetric cryptokeys
before digtribution. In many implementations, including the DoD PKI, the cryptokeys
(asymmetric and symmetric) are stored in a secure repository (directory), and retrieved when
they are needed via the PKI’ s lightweight directory access protocol (LDAP) capability or, in
some cases, X.500 DAP.

Integrity: Implements PKI technology to calculate and affix cryptographic hashes to executable
code and data. These hashes are then used prove that the code and data have not been
tampered with between the time they were created and the time they are executed or accessed.

41
FOR INFORMATIONAL PURPOSES

Draft

The PKI may aso be used to digitally sgn code and data to prove that they originated from a
known, trustworthy (or at least trusted) source.

Nonrepudiation: Implements PKI technology to digitdly sgn, in anirrefutable, legdly
enforceable manner, transactions and documents.

Authorization: PKI aone cannot provide authorization. However, X.509 Verson 3 digita
certificates accommodate inclusion of attributes that may indicate user roles, rights, or privileges.
When used in conjunction with a directory service or access control list, these X.509 attribute
certificates can congtitute a PK|1-based authorization service.

The Public Key Enablement Protection Profile (Draft Verson 0.2, March 22, 2002), devel oped by
Entrust CygnaCom for the U.S. Marine Corps, provides a useful set of security metrics for gpplication
developers, to ensure that their PK-enabled application provide at least the core set of functions
required to establish medium assurance.

4.1.2 Why PK-Enable?

In environments with VPNs it may at first seem redundant to PK-enable the gpplication. VPNs,
including those based on |Psec, provide cryptographically based authentication, integrity and
confidentiaity services between network devices. Because most VPNs operate at the Internet protocol
(IP) layer, they are unaware of, and are transparent to, users, applications, and protocols above the IP
layer. In essence, the VPN creates an encrypted | P pipe between network devices for transport layer
and applications layer protocols to pass through.

Because VPNs are not aware of anything above the IP layer, they cannot support many of the security
requirements of gpplications, including Web applications. Specificaly, VPNs do not

Provide digitd signatures for nonrepudiation of transactions
Perform content inspection for interpreting the gpplication’s data stream for policy enforcement
Authenticate individua users
Authorize specific users access to specific gpplications.
4.1.3 When to PK-Enable

The types of DoD applications for which the DoD PKI must be used as the primary 1& A mechanism
include the following:

Unclassified private Web servers, including those that provide nonsensitive public releasable
information

All emall gpplications

42
FOR INFORMATIONAL PURPOSES

Draft

Web applications that run on unclassified networks.
In addition,

Web gpplications on classfied networks must use DoD PKI for authentication of the client
(browser) to the private Web server;

Applications that run on unclassified private DoD networks must be interoperable with DoD
PK1, and must ensure that users are authenticated using DoD PKI certificates, unlessthe
unclassified network’ s predominant user community is not required to use DoD PKI certificates
for authentication. Such users include retirees, dependents, and academia.

As noted earlier, browser authentication of the Web server should be implemented using DoD PKI
server certificates, and server authentication of users and browsers should be implemented using user
identity certificates. All 1& A and other sensitive data and transactions between the server and browser
should be transported over an SSL connection.

The DoD PKI should aso be used to provide confidentidity (through encryption), nonrepudiation
(through use of digitd Sgnatures), and integrity (through use of cryptographic hashes and digita
sgnatures). Discussons of the implementation of PKI-based confidentidity, non-repudiation, and
integrity in gpplications appear later in this document.

Non-Web gpplications, particularly backend applications that interoperate with frontend Web servers
should be andyzed to determine whether those applications would benefit from use of DoD PKI for
I&A, confidentidity, integrity, or nonrepudiation.

Documentation of al DoD directives, guidance, and resources for PK-enabling of application-level
authentication of users can be found at the DISA PK-Enablement Web ste. This Web site should be a
primary source of direction and guidance for devel opers who need to PK-enable their applications. The
URL is

NOTE: For one to access the documentation that is useful for application
developers, both sites require submission of a DoD PKI certificate or connection
origination froma .mil or .gov domain.

These DoD Web sites present documentation that provides guidance to the developer on implementing
and integrating DoD PKI in DoD applications. There are documents that identify the cryptographic
standards, protocols, certificate classes and versions, token types, and APIs that must be conformed to.

43
FOR INFORMATIONAL PURPOSES

Draft

The stes dso provide PK-enabling templates and a knowledge base of DoD PKE lessons learned by
other developers.

4.1.4 PK-Enabling Web Applications

The defacto standard for PK-enabling Web gpplicationsis the SSL protocol, which, in conjunction with
the underlying PKI1, provides confidentidity, integrity, and (optiond) client and server authentication.
SS. was origindly designed to be used in gpplicationsin which the client has little trust in the server.
The server does not need to have much trust in the client. An example is an e-shopping system in which
the user wants to be sure that the server isthe server he thinksit is before sending it his credit card
information, but the server does not care who the user is, aslong as the credit card information sent by
the user isvalid. However, SSL. does support an option that enables the server to authenticate the
browser based on the user’ s persond identity certificate before granting the user access to the server.

To date, most Web applications implement only one-way certificate-based authentication. When user
authentication is required, these applications use an HTML form to let the user enter a username and
datic password for identification and authentication.

DoD Web applications, however, must implement two-way mutud certificate-based authentication, that
is, browser authentication of the Web server, plus server authentication of users; the first usng DoD

PKI server certificates, and the second would use user persond identity certificates. Each browser must
have its user’ sidentity certificate |loaded into it from the user’s PKI token (e.g., CAC or FORTEZZA),
or from afile on the user’s PC hard drive or afloppy disk. Once the user’s certificate is loaded into the
browser, the browser will be able to pass the user’ s certificate to the server gpplication during the SSL
authentication handshake.

In most cases, SSL is used to accomplish initid session authentication, and then to provide an
authenticated, encrypted trusted path over which server authentication of users can be accomplished via
LDAP authentication at the gpplication layer (above the SSL layer). The server certificate authenticated
by SSL. may aso be used for LDAP authentication, and DoD PKI LDAP directories can be accessed
by LDAP-capable SSL, to retrieve stored certificates and session encryption keys. To establish an SSL
connection to the LDAP directory, a port number must be specified to run the SSL service on the
LDAP server; port 636 isthe standard LDAP SSL. socket number for TCP and UDP.

NOTE: SSL traffic may not be able to pass through some application proxy
firewalls without first tunneling the SSL protocol to make it transparent to the
firewall.

It isunlikely that username and password authentication can be done away with atogether, though it
may be possble to limit it to an dternative authentication method, used only when certificate-based
authentication fails, or when a user is unable to present a (vaid) certificate because he has not yet been
issued one, or if the certificate expired when he was on vacation or temporary duty yonder (TDY).
Also, certain applications may support non-DoD user communities for whom it is not practica or even
advisable to assign DoD PKI certificates. There may be gpplications in which users require access for

44
FOR INFORMATIONAL PURPOSES

Draft

only alimited time (e.g., Codition gpplications). Also, in certain tactica applications, lack of direct,
reliable access to a PK or certificate management infrastructure may make the use of certificates
imprecticd.

Like VPNs, SSL does not provide the technology for digital sSignatures; digital signature capability for
Web application users must be implemented through a browser extension or plug-in. Nor is certificate
vaidation (either through retrieva and checking of certificate revocation lists [Curls] or viaan online
certificate status protocol [COPS] responder) supported by most COTS browsers without the addition
of software extensons.

Even if the browser doesinclude the necessary software for certificate validation, a security imperative
for dl DoD Web gpplicationsis that the server applications must not rely on or trust browsersto
perform any security tasks. A DoD server gpplication must not rely on auser’ s browser to vaidate that
user’s certificate before sending it to the server. Instead, the server gpplication must perform validation
of dl user identity certificates it recelves.

At this point, the DoD PKI uses Curls for certificate revocation. The loca directory used by the server
gpplication must be able to store the Curls issued by the DoD PKI certification authority (CA), and the
Web server gpplication must be programmed to interpret the directory-stored CURL directly for
certificate vaidation, or the directory and the gpplication must support the use of COPS to enable the
goplication to vaidate the certificate in red time. The actua certificate vaidation functiondity may be
implemented by a\Web proxy or Java gpplet implemented within the server application. Or it may be
provided by invoking an externa certificate vaidation system, such as KyberPass' s Validation
TrustPlatform or CertCo's CertVdidator (see Appendix C), most of which include OCSP responders.

In addition to certificate-based 1&A, the Web application will dso need to include some form of server
applet or proxy (augmenting the standard Web server) to perform application-level monitoring and
auditing of Web connections, access events, and security violations. Another applet or proxy should be
used to implement granular access control, down to the Web page or URL leve. When combined with
adatabase (directory) of usernames and permissions (the application’s access contral list [ACL], this
goplet and proxy may aso perform user authorization for the gpplication.

4.1.4.1 Choosing an SSL 3.0 Tolerant Web Server

There are some COTS Web servers that incorrectly implement the SSL 3.0 specification. Thisincorrect
implementation causes these serversto regject connection attempts from browsers that are compliant
with the SSL 3.0 and TLS (SSL 3.1) specifications. Specificaly, the SSL 3.0and TLS (SSL 3.1)
specifications both contain the same provision for detection of version rollback attacks. This provison
enables the server to detect a particular type of denia of service attack in which a so-cdled manin the
middle captures the browser’s SSL. connection request in trangt to the server and dtersthat request to
reflect alower protocol version number that is not interoperable with the TLSSSL. version supported
by the browser. The server that does not support TLSis supposed to roll back to SSL 3.0 (according
to the specified rollback provision), but instead they drop the connection to the browser, resulting in the
display of ablank page in the browser.

45
FOR INFORMATIONAL PURPOSES

Draft

The following Web servers are known to have this problem and should not be used:

Domino- Go-Webserver/4.6.2.6 (and possibly later versions)
IBM_HTTP_Server/1.3.6.3 or earlier (use 1.3.6.4 or later)
IBM_HTTP_Server/1.3.12.1 or earlier (use 1.3.12.2 or |ater)
Java Web Server 2

0OSU/3.2 — DECthreads HTTP server for OpenVM
Stronghold/2.2

Infinite Technologies Webmail v. 3.6.1 (use later version) .

4.1.5 PK-Enabling Backend Applications: PKI Toolkits

With the DoD PKI, the PK-enabled agpplications that do not support SSL can retrieve the same user
identity certificates from the DoD PKI LDAP directory as are retrieved by the Web server’s SSL
authentication service. But whereas SSL provides the basis for Web gpplication security, providing the
same security functiondity in anon-Web legacy may require use of a proprietary PKI toolkit, such as
those sold by Bdtimore Technologies, Entrust, RSA, and VeriSign.

PK -enabling of alegacy application often entails extensve changes to the application source code to
enable the application to provide direct PKI support and SSL, if desired). This makes PK-engbling of
third-party legacy gpplications, as well as older in-house legacy applications for which source code is no
longer available, impossible to PK-enable. In addition, PKI toolkits are generaly not available for
mainframe and minicomputer legacy agpplications. In the case of such legacy applications, it may make
more sense to implement a security frontend (i.e., an SSO and encryption server) to perform PKI-
based authentication and encryption on behdf of the legacy backend. This approach can work securely,
however, only if the transmisson path between the security frontend and the backend application (or if it
communicates directly with the Web server, between that server and the legacy back end) is assured to
be secure from externa penetration, that is, aVVPN would be implemented between the two, to provide
atrusted path between them for exchange of sengtive authentication data. Alternately, afirewal may be
used to isolate the backend connection and protect it from externa penetration.

Be aware that PKI toolkits are vendor specific. RSA Security’s BSAFE toolkit, for example, expects
the gpplication to use RSA’s PKI; Entrust’s PKI toolkit presumes use of the Entrust PKI. Insome
cases, aJava programmer using the Java Software Development Kit (SDK) may be just as effective as
a PK-enabling developer using an expensive PK-enabling toolkit to PKI-enable an gpplication. That
said, several PK-enabling toolkits have been listed in Appendix C, for those who want to use them.

4.2 IDENTIFICATION AND AUTHENTICATION MECHANISM S

Nonbypassable authentication based on trustworthy credentials should apply to users and to processes,
programs, and any other active entity or object that interacts with the application on a user’ s behdf. In

46
FOR INFORMATIONAL PURPOSES

Draft

many cases, gpplications will not perform their own I&A, but will cal out to an externd 1&A
mechanism. This mechanism may be in the underlying operating system, or it may be an externd
authentication or SSO server.

In certain high-risk environments, a third factor of authentication, in addition to PKI certificate- based
I&A, may be desred. Thisthird factor may be a static password, a dynamic password, or a biometric.
In some gpplications, the user’sinitiad authentication may be viaa third-factor mechanism, with DoD
PKI certificates used as session tokens for dl subsequent reauthentications during the authenticated
session. PK-enabling of applications to enable them to perform 1&A using PKI certificates was
discussed in Section 3.1.

There are two ways in which user authentication to the Web gpplication may be implemented:
1. If an SSO has been deployed for the gpplication environment:

Obtain the user’s 1&A information (identity and credentids) viaan APl between the
Web application and the SSO system

If you do not wish for the gpplication itsdf to have to handle user credentids, have the
goplication wait for the SSO system to send a go-ahead for the user, and accept that
go-ahead as proof of the user’s having been positively authenticated.

2. Andternativeisto use PKI-based SSL authentication:

Authenticate users based on their DoD PKI or FORTEZZA X.509 Verson 3
certificates transferred from their browsers. Cryptokeys would be exchanged viaan
appropriately strong key exchange agorithm to establish a secure session encrypted
using an gppropriately strong sesson encryption agorithm (i.e.,, the dgorithms specified
for the DoD PKI or FORTEZZA)

Implement an aternate user name and password-based |& A mechanism (e.g., an
authentication screen with an HTML form embedded to receive username and
password) to accommodate 1& A of userswho cannot present vaid certificates. Do not
implement this mechanism in a Java gpplet; Java applets are too vulnerable to
compromise to be trusted to implement a security function such as user 1&A.

NOTE: FORTEZZA uses Class 4 certificates. DoD PKI supports both Class 3 and
Class 4 certificates, as appropriate, for the sensitivity and mission criticality of
the application. All DoD PKI-based applications will eventually transition to
Class 4 certificates, according to the schedule for DoD PKI evolution.

47
FOR INFORMATIONAL PURPOSES

Draft

4.2.1 Notification of Authentication

Regardless of the I& A method used, when the user is successfully authenticated, before granting the
user access to the requested Web application or page, the application needs to present the user with the
following information:

The fact that the user has accessed a government system
The extent to which this system will protect the user’s privacy rights
The highest classfication level of data that may be processed by the gpplication

The user’s respons bilities while using the application to process sengtive or classfied
information

The fact that the user’ s actions while using the application are subject to audit.

In addition, if the gpplication processes classfied information, this notification message must dso include
the following information associated with the user’ s authenticated username:

Date, time, and origination (client |P address or domain name) of the most recent previous
authentication of this username

Number of unsuccessful & A attempts from this username subsequent to the most recent
previous successful authentication.

The best way to implement the required warning message would be to write a script that can
dynamicaly generate the HTML for the warning message and present that message:

In the main browser window, with a clickable link (text or labeled icon, or both) at the bottom
of the screen, enabling the user to acknowledge having read the notification message; clicking
thislink would automaticaly launch the gpplication sesson requested by the user

In a separate pop-up browser window, with a clickable link (text or labeled icon, or both) at
the bottom of the window, enabling the user to acknowledge having read the notification
message, clicking thislink would then automatically close the pop-up window. Y ou may chose
to code the window in away that prevents the user from closing the window via the sandard
button &t the top of the window, that is, make the user’s explicit acknowledgment of the
notification window the only way the user can close the window

In abanner at the top of the current Web page (e.g., coded with attention-grabbing effects such
asabright colors, animation, etc.), with a clickable link (text or labeled icon, or both) within the
banner, enabling the user to acknowledge having read the natification; clicking this link would
then automaticaly make the banner disappear.

48
FOR INFORMATIONAL PURPOSES

Draft

4.2.2 Client (Browser)-to-Server Trusted Path

Because most operating systems do not establish trusted paths for exchange of authentication
credentias and other sengitive data between clients (browsers) and servers, some other means must be
used to ensure that sengitive security information, such as passwords, are sent securely between them.
In non-Web systems, this usualy means client encryption of the password before transmitting it; it may
aso mean implementation of a VPN to encrypt the network connection over which the password is
sent.

In Web applications, atrusted path for password transmission is smulated through the use of HTTPS to
transmit HTML authentication forms over SSL-encrypted connections between clients and servers. We
say Smulated because implementation of atrue trusted path is virtualy impossible in Web applications.
There are anumber of well-documented attacks used to fool users of Web browsers into thinking they
are connected to a different URL or server than the one to which they are actudly connected. These
attacks include Web spoofing through use of changed URLS, rare URL syntax, or URLs very smilar to
vaid URLSs, with various techniques used to obfuscate the actual URL being visited. In dl such cases,
use of an SSL. connection will not prevent the problem because the bogus Web server can use HTTPS
and establish and SSL. connection to the user’ s browser just as easily as avalid Web server can.

Thereislittle that a\Web application developer can do to prevent these exploits, except to encourage
the use of domain names and subsidiary URL s that are very smple and unlikely to be misspelled or
forgotten by the user, and to purchase other domain names smilar to the vaid domain name to be used
by the Web server. For example, if the Web server’s domain name is vaidname.mil, the organization
may want to aso purchase vaidname.gov, vaidname.org, and vdidname.com to prevent these names
from being used by attackers to set up bogus Web sites to mimic the true vaidserver.mil ste. Before
selecting adomain name, the organization should search for dl smilar domain namesto determine
whether they may be owned by potentid attackers intending to host malicious Webstes.

Applications should be written to trust only information (authentication information, configuration
information, input data, query results) received over trusworthy channels. No unauthenticated
transmission should be considered trustworthy. TCP/IP authentication should not be trusted as the sole
authentication mechanism. To implement a trusted channd, take these measures.

E-mail messages and files sent over untrusted channds should be digitally signed to prevent
them from being modified or forged.

Hidden fields should be digitaly signed or encrypted, or both (usng akey only the server can
decrypt), by the browser before they are returned to the server, which should then validate the
digitd sgnature.

Cookies returned by the browser to the server should not be considered trustworthy unless
trangmitted over an SSL/TL S encrypted and authenticated channdl.

49
FOR INFORMATIONAL PURPOSES

Draft

Files and data containing references to other data, particularly remotely stored data, (Examples
of remotely stored dataare HTML or XML that includes references to files such as style sheets
and document type definitions [DTDs]) should not be trusted unless the file containing the
reference has been received over atrusted channel and/or digitaly signed or encrypted. This
measure will help minimize the possbility of an attacker tampering with the data reference. To
tamper might be to subgtitute a different style sheet for a Web page that whites out critica
words, inserts new text, or otherwise defaces the Web page. Smilarly, external DTDs could be
modified to make the document unusable (by adding declarations that bresk vaidation) or to
insert different text into the document.

4.2.2.1 Extending the Chain of Trust to a Backend Server

In the case of a Web gpplication in which the Web server interoperates with a backend database or
other backend server, the chain of trust established between browser and Web server must be
extended to the backend database server. The Web front end in this scenario authenticates the browser
(and its user) based on X.509 certificates. The question is how to convey that user's credentidsto a
backend server that expects to see a username and password, and how to extend individud user
accountability beyond the Web front end to the backend database.

The LDAP (or X.500) directory in which the users X.509 certificates are stored can aso be used to
map each certificate to the username and password that must be transmitted to the database back end.
The gpplication front end would smply issue an LDAP request to that directory, conveying the user's
persond identity certificate, and would retrieve the corresponding username and password for
transmittal to the database back end.

One gpproach would be to create a pool of connections from the Web front end to the backend
database, with one connection alocated per security role supported by the application, in essence
extending RBAC to the backend server. If individua accountability is required by the backend server,
the Web front end would have to create a separate connection for each user to the database back end.

Another approach to this problem would be to use the Java J2EE application server platform. The Java
Authentication and Authorization Service (JAAS), supported by the J2EE, was devel oped to address
these issues, that is, authentication of users of Java applications, applets, beans, and servlets, and
authorization of users to ensure they have the access control rights (permissions) required to perform the
actions they request and attempt.

JAAS implements a Java pluggabl e authentication module thet references the Java server’ s configuration
to determine which authentication technology, or LoginModule, should be used (e.g., username and
password, PKI, or biometric). The credentias used by the user to log in to the J2EE server can be
passed by the server to a backend database for authentication, or other credentials may be used to log
in the user to the backend server. Connection and authentication between the J2EE server and the
backend database is handled by the Java Database Connectivity APl/service (JDBC).

50
FOR INFORMATIONAL PURPOSES

Draft

4.2.3 PKI-Based I1& A

Asnoted in Section 4.1.4, 1&A in DoD Web server applications must be PK-enabled to validate and
authenticate users based on their DoD PKI1 X.509 identity certificates. Some COTS X.509 certificate
validation software products that may be integrated with Web server gpplications are listed in Appendix
C.

Asadso noted in 4.1.4, DoD Web agpplications, dthough using certificate-based |& A astheir main 1&A
mechanism, should also support username and password authentication to accommodate users who
cannot authenticate using DoD PKI certificates (due to lack of avalid certificate). Implementation of
Web- based username and password 1&A over SSL connectionsis discussed in Section 4.2.

NOTE: The classes of DoD PKI certificates to be used for PKI-based & A on DoD
public, private, mission critical, and classified DoD Web servers are specified in
ASD C3l Memorandum, Public Key Enabling (PKE) of Applications, Web Servers,
and Networks for the Department of Defense (DoD), 17 May 2001 (DoD PKE

Palicy).

4.2.3.1 Browser Use of Hardware Tokens

Onthe client side, the browser must be able to accommodate the use of a hardware token asthe
storage device for the user’ s persond identity certificates and private cryptokeys. This means that the
browser must provide an interface to the hardware token.

To use the public key capabilities of the CAC to enable the user to establish an SSL connection with the
Web server for client authentication, the browser needs to be able to access the data and functions on
the CAC. Thereis no single standard method for doing this. Netscape Navigator uses PK CS#11, dso
known as Cryptoki, from RSA laboratories as its card access protocol, whereas Microsoft’s Internet
Explorer uses Microsoft' s own proprietary CryptoAPI. Both API's have some smilarities, such as
dlowing a Dynamic Link Library (DLL) plug-in to the browser to provide the card interface service.
These browser plug-ins should be obtained from the vendor of the smart card reader being used with
the CAC.

If FORTEZZA isthe token being used, Microsoft Internet Explorer 5 (and later versons) includesa
FORTEZZA cryptographic service provider (CSP) plug-in. Netscape Communicator’ s Cryptoki
interface aso supports access from the browser to the FORTEZZA card.

4.2.4 Reusable (Static) Password & A

Although DoD Web gpplications must use DoD PKI astheir primary 1& A mechanism, for most
gpplications, reusable (atic) username and password authentication must aso be implemented.
Specificdly, username and password authentication may:

51
FOR INFORMATIONAL PURPOSES

Draft

Provide an dternative authentication mechanism for users who are unable to present PKI
certificates to the server. Thisis particularly important in the short term, for not dl DoD users
have yet been issued DoD PKI identity certificates

Act as athird factor of authentication in applications where PKI authentication aloneis not
consdered sufficiently robust or trustworthy, and use of dynamic passwords or biometricsis not
considered apracticd dternative

Serve as a preliminary gpplication authentication mechaniam in gpplications for which certificate
useisimpractica, such as, codition applications that support dynamicaly changing non-DoD
user communities.

In addition, username and password authentication is likely to continue as the predominant 1& A
mechanism in non-Web gpplications, including backend database applications and other legacy
gpplications that may need to interoperate with DoD Web applications.

4.2.4.1 Implementing Reusable Password | & A in Web Applications

Username and password 1&A is being implemented increasingly through use of SSO systems that
provide acommon, centraized authentication service to multiple gpplications, which instead of
implementing 1& A themsalves, receive the authenticated credentids of users viaan AP to the SSO
system. A discussion of gpplication integration with SSO systems appears in Section 4.2.3.

When implementing static password authentication, do not use the Web Server’ s basic authentication
capability without aso implementing SSL/TL S encryption between the browser and the server, because
basic authentication does not encrypt passwords before transferring them. Although HTTP digest
authentication, in which the password is encrypted, has been specified as an dternative to basic
authentication, in redity HTTP digest authentication is often implemented incorrectly by, or incompatibly
between, different brand names of browsers and Web servers. Therefore, SSL/TL S is the encryption
mechanism that should be used between browsers and servers for transmission of authentication and
other sendtive information.

Furthermore, never use unencrypted or persistent cookies to store and convey authentication data. Such
cookies are not stored or handled securely by the browser and thus are easily captured and replayed or
otherwise compromised.

The correct way to implement username and password 1&A in aWeb application is through the use of
ether one-time encrypted cookies, or through the use of encrypted HTML hidden form fields. Here are
ways that the latter is used:

1. Before granting the user access to arequested Web page, the application should present a pop-
up HTML form with two blank fields: the first prompting entry of the user’s username and the
second prompting entry of the user’s password.

52
FOR INFORMATIONAL PURPOSES

Draft

2. Astheuser types his or her password into the HTML form field, that password should not be
echoed back in cleartext (where it could be seen or copied by a shoulder surfer). Instead, the
HTML fidd should echo back a series of nonmeaningful characters (asterisks are most often
used) corresponding in quantity to the number of charactersin the user’s password.

3. The HTML form containing the user’ s password should be transmitted over an SSL/TLS
encrypted link. This transmission should be ingigated by an HTTPS POST operation, not by an
HTTPS GET operation. Thisisbecause HTTP GET writes hidden HTML form field data
(passwords) in cleartext in the browser’ s history log, where it can easily be discovered and
copied by amalicious user who gains access to the authorized user’s systlem in that user’s
absence.

4.2.4.1.1 Password Digests Instead of Passwords

Rather than sending the user’ s whole password over the SSL/TL S-encrypted link, it is more secure to
calculate and send adigest (cryptographic hash) of that password, as the password digest isfar less
susceptible to capture and replay attacks. In ether case, the hash mechanism used must be Nationa
Information Assurance Partnership (NIAP) CC validated.

4.2.4.2 Confidentiality and I ntegrity of Usernames and Passwords

To ensure protection of sendtive I&A data (usernames and passwords) and, indeed, al sengtive data,
develop gpplications according to the following guiddines:

Use HTTPSwith SSL/TLSfor all sensitive data transmissions: As dready noted, any time a
static password or password digest (or any other sengitive user input) is to be tranamitted
between browser and server, the connection over which the password and digest is sent should
be encrypted with SSL/TLS. Indeed, it may be desirable to use HTTPS rather than HTTP,
which meansthat SSL/TLS will be invoked for every browser-server transaction, and not just
for theinitia 1&A transaction, to ensure that the password is never inadvertently retransmitted in
cleartext during a sesson reauthentication, or in an HTTP referrer field to another Web Ste.

Use only PKI certificates as session tokens. The browser should not use the password and
digest embedded in an HTML form field, in aURL, or in a cookie as the user’ s session
reauthentication token. Only DoD PKI certificates should be used as session tokens for all
Session reauthentications.,

Never store or send sensitive data in a cookie. Cookies should not be used to store any kind
of senstive information. Cookies used in a Web gpplication should aways conform to the
gpplication’s security policy, specificaly with regards to whether the cookies used are persistent
or nonpersistent or secure or nonsecure. If the system on which the browser runs does not
provide adequate security, the application should use only nonpersistent cookies. If SSL/TLS is
used for transmitting cookies, the application should be consistent and use only secure cookies.

53
FOR INFORMATIONAL PURPOSES

Draft

Use HTTP POST, not HTTP GET. Also, remember that passwords (and other sengitive data)
entered by usersinto HTML form fields may be stored in cleartext in the browser’ s history log
or aproxy log unlessHTTP POST rather than HTTP GET is used when submitting the HTML
form. See 4.4.3.2 for more information.

4.2.4.3 Unsuccessful Log-1n Attempts

Applications that support username and password authentication should be configurable to audit every
unsuccessful log-in attempt (correctly entered passwords should not be recorded in the audit log). In
addition, the authentication mechanism should be configured to dlow only afinite number of log-in
attempts, after which the application should send an darm to the administrator notifying him of the
attempted security violation; the gpplication may aso be configurable to automatically impose alockout
period of a configurable duration on the username from which the unsuccessful log-in attempts
originated. Thiswill prevent the hacker from further abusing that username to launch a password-
guessing atack.

Configuration of log-in thresholds, lockout periods, and auditing of unsuccessful log-in attempts are
standard features of system-levd 1& A mechanisms, SSO systems, and authentication middleware. If the
goplication’s1&A mechanism is being developed from scratch, not using one of those fegtures, you
must be sure it implements the necessary administrator-configurable log-in attempt threshold, auditing,
and configurable disposition (configurable lockout period or adminigtrator aarm, or both).

4.2.4.4 Explicit Log-Out

Web applications that require usersto explicitly log in (versus transparently authenticating users via PKI
certificates done) should aso provide a mechanism to enable those users to explicitly log out again.
When the user logs out, the gpplication should purge from memory and cache dl initid authentication
data, session reauthentication tokens, and session |Ds associated with the user. If the user fallsto log
out, a session expiration time-out should be enforced by the gpplication, a which time al authentication
and session information associated with the user should be purged, and the user, if he attemptsto
reconnect to the server, should be required to reauthenticate to establish a new session.

4.2.4.5 Password Management

The password management system used by the application must enable the adminigtrator to configure
password expiration thresholds, and it must require users to change expired passwords before they can
access the system. The gpplication’ s password management system must also enforce strong password
rules on passwords sdlected by users. It must prevent users from sdecting weak passwords and
provide them with guidance on how to construct strong passwords. Guidance for uses could be an
informationa message on the HTML form used for password selection, reinforced by a returned error
message or a pop-up window triggered by a user’ s attempt to select aweak password. (See Section
4.1, Requirement #4.1.19, of the Recommended Sandard Application Security Requirements
document for information on strong password construction).

54
FOR INFORMATIONAL PURPOSES

Draft

The gpplication must not predetermine or require the use or assgnment of particular usernames (other
than that associated with the Web server’s “nobody” account), and it must not prevent the administrator
from defining dl usernames, including any usernames assigned to application processes (rather than
human users) and initid passwords. The gpplication must not require use of any anonymous accounts,
other than the Web server’ s nobody account, which should be assigned a username other than

“nobody” if a dl possble.
4.2.5 Single Sign-On Systems

Use of an SSO solution in aWeb gpplication context isintended to diminate the need for usersto
reauthenticate to Web applications when they access more than one gpplication viaa Web porta during
the same session. Idedlly, the user will have to provide his credentids (username and password,
certificate, etc.) only once: to access the Web porta the user and will not be required to reauthenticate
to the individual Web applications made ble by the portal.

SSO comes in two main forms: desktop SSO systems, such as the Kerberos-based Windows 2000
Active Directory Domain, and Web access management SSO systems, such as RSA ClearTrust and
Oblix NetPoint (cookie based).

One of most established, popular SSO frameworks is Kerberos, which isintegrated into both Solaris
and Windows 2000. Kerberos may aso be found as an enabling component in SSO systems that use
PKI certificates rather than Kerberos tokens as their end- user authentication credentids. One example
is the Kerberos-encrypted password store technology used with an LDAP Directory and X.509
certificatesin the Navy's TFWeb SSO implementation, to ensure that the origina passwords cannot be
recovered. Kerberos has aso been implemented with the Securel D one-time password system, asin
the DoD High Performance Computing Modernization Program.

To use the authentication service of most SSO solutions, server applications must be aware of the fact
that they operate within an SSO framework. Integration of SSO code into clients and servers dikeis
required, which means modification of exigting clients and serversif they are to be incorporated into the
new SSO framework. An exception isthe server that aready has a clear challenge-response sequence
that can be automated, in which case required SSO modifications will be limited to the client. These
modifications will enable the dient to obtain the user’ s authentication credentias not directly from the
user, but from the SSO framework.

The mgjority of current SSO frameworks use either username and password or X.509 certificate-based
authentication (with the SSO system performing the certificate vaidation). The SSO system handles
identity and rights management for the entire operating environment, including al of the applications and
operaing systemsin that environment. The SSO system protects the user authentication and
authorization information by transmitting it between entities on the network via SSL-encrypted links.
Once the SSO framework isin place, access to the back end is possible only through the SSO server.

The Web access management SSO system most likely uses encrypted temporary session cookies to
pass authenticated user identity information from browser to Web server. Note that use of cookies for

55
FOR INFORMATIONAL PURPOSES

Draft

this purposeis not a good option for Web applications that have to authenticate across domain
boundaries: for security reasons, the HT TP cookie specification dlows a Web server to manipulate only
cookies that will be sent back to itself or to other serversin the same domain. This means that whereas
acookie sent by one server will be sent to other serversin the same domain, it will not be sent to
sarversin any other domain. However, multidomain SSO systems are available that use proprietary
Web server plug-ins to enable authentication securely across domain boundaries (e.g., Microsoft's
Passport SSO). In the SAML, being defined by the OASIS, promises to provide a standard XML-
basad security mechanism for exchanging authentication and authorization information between domains.

Web-based SSO systems may aso provide an aternative mechanism for passing authenticated user
identity dataviaHTTP request header filds. HT TP headers done are not trustworthy; they can be
intercepted and spoofed. SSO of Web applications usng HT TP request headers without a secure
authentication token (e.g., encrypted cookie, signed assertion) camnot be trusted. Web applications that
gt behind a Web portal that uses HT TP header-based identity transfer should reauthenticate users who
connect to them. Implementation of an SSO agent on the Web server running the application will enable
passing the SSO secure authentication token. The advantage of using an SSO Web server agent is that
it tightly integrates the Web application with the Web portal’ s SSO system. However, some
organizationd firewal policies prevent the transfer of SSO data between Web server agents and the
centra SSO system.

Another difficult agpect of implementing an SSO framework is defining the connectors between Web
portals and backend legacy systems, such as database servers. Connectors are the executives for SSL-
enabled mutual- authentication sessions between servers. To date, there seem to be few efforts under
way by mgor SSO or Web software vendors to devel op connectors for their systems.

NOTE: Aside fromrestrictive firewall policies, firewalls can cause other problems
when SSO systems are deployed. SSO generates numer ous network processes—
more than can be efficiently routed to port 443. This means that some SSO
vendors use other ports that need to be opened to accommodate the SSO traffic.
If the firewall’ s ports-and-protocols policy—or a general lack of coordination
between firewall port assignments- prevents use of other port numbers by the
SSO traffic, SO transfers may not be able to cross firewall boundaries. Though
thisis mainly a problem for infrastructure security and networking teams,
application devel opers should be aware of it insofar as they influence the
organization’s decision to use SSO rather than a more firewall friendly
authentication scheme in the Web application environment.

4.2.5.1 Security Service APIs

Security service gpplication programming interfaces are necessary in SSO frameworks. The most
common standard security service application program interface is the GSS-API, which is used to
enable gpplication cdlsto arange of underlying authentication mechanisms and technologies. Three
SSO schemes—K erberos v.5, the OpenGroup (formerly Open Software Foundation) Distributed

56
FOR INFORMATIONAL PURPOSES

Draft

Computing Environment (DCE), and the European SESAME scheme—d| use GSS-API asa
programming interface to enable gpplication use of SSO I& A capabilities.

SSO solutions based on GSS-API most often base authentication on symmetric cryptographic tokens
transferred from the SSO to a cache maintained by the operating system’ s security service provider.
These tokens can ether directly provide accessto services or may act as time-limited authenticators that
in turn are used to obtain one-time service access privileges.

4.2.5.2 SSPI in Windows NT and Windows 2000

For digtributed applications (including Web applications) on Windows NT and Windows 2000 systems,
the API to the operating system authentication servicesis the Security Support Providers Interface
(SSP1), which sits between the application layer network protocol (e.g., HTTP, FTP) and the Windows
Security Support Providers (i.e.,, NTLM, Kerberos [which is now supported in Windows 2000],
SChannd [the Windows implementation of SSL/TLS], and distributed password authentication [DPA]).

As an dternative to SSPI, Windows operating systems dso provide the graphica identification and
authentication (GINA) API, which isintended to alow vendors and other developers of dternative
authentication mechaniams (i.e., dternatives to username/password authentication) and pluggable
authentication modules (PAMSs) to implement those systems on Windows. Also noteworthy isthe
cryptographic application programmatic interface (CAP!) to the underlying cryptographic services
provided by the operating system and used in conjunction with any cryptography- based authentication
scheme.

Unlike systems based on GSS-API, Windows NT/2000 does not retrieve a set of credentias that
match the authentication. Instead, Windows encodes the authentication response and forwardsit to a
centra repository known as adomain controller. If the authentication response is correct, the
controller designates the client as authenticated for access to its security domain. The different services
in the domain accept this designation by the domain controller and dlow the controller dso to make dl
authorization decisons related to the authenticated cliert.

4.2.5.3 Vulnerabilities of SSO Systems

Wheressin traditional Web authentication each Web server is responsible for safeguarding the
authentication information of its users, when an SSO system is used, those data are centralized in one
SSO server. Thus, compromise of this centra server would be devagtating to the security of the entire
Web infragtructure that relies on it.

In addition to authentication data, the SSO server often maintains user profile information on dl
registered users, aso soring thisinformation centrally and making the server an extremely attractive
target for attack, both for denia of service and unauthorized access.

The centralized service model implemented by SSO is antitheticd to the distributed nature of Web-
based computing. Indeed, digtribution is what gives Web computing its robustness and popularity.

57
FOR INFORMATIONAL PURPOSES

Draft

The effects of adenid of service attack on an SSO server are acute. Obvioudy, the usefulness of the
SSO system increases in direct proportion to the number of Web applications and other systems that
useit. But as the number of systems that support SSO grows, the effects of an outage, intentiond or
accidentd, adso grows. An attacker might accomplish such adenid of service by flooding an SSO-
supporting Web site with bogus user log-in requests.

The usud gpproach to service availability isto replicate the vulnerable service sufficiently to make
catastrophic failure unlikely. However, because older SSO systems (e.g., ClearTrust 4.6) do not
implement robust directories, there is a concern about how such systems can handle the fundamenta
problems of key distribution and database replication on alarge scde. Replicating the service would
require multiple copies of private keys across the replicated SSO servers, thus increasing the exposure
of those keys to potentiad compromise. Newer SSO systems, by contrast, are based on directories with
clear replication architectures.

A specific denid of service atack existsin SSO systems that store their SSO tokens as cookiesin
users browsers. An attacker could impersonate the SSO server and del ete the token cookies from the
browsers a will.

4.2.6 Other 1& A Technologies
4.2.6.1 One-Time (Dynamic) Password Systems

Applications that base authentication on reusable (static) passwords are subject to numerous attacks
that target the inherent vulnerability of those passwords, such as password-guessing attacks, password
capture and replay, shoulder surfing, and other forms of socid engineering. In environments where such
attacks are likely, it makes sense to replace reusable passwords with one-time (dynamic) passwords.

One-time password systems are system-level modules that must be integrated into the underlying
operating system. These systems provide APIs through which the application’s & A process can invoke
the one-time password system to validate the one-time password sent to the gpplication by the user.
The user obtains the password from a handheld token or a software program on his client.

It may aso be desirable, in adistributed multiserver or multidomain application environment, to use a
one-time password system in combination with a distributed authentication system, such as X.509 or
Kerberos. In the DoD’ s High Performance Computing Modernization Program, for example, RSA
Security’ s Securel D one-time password system is used for preliminary user authentication. The system
assigns the user a Kerberos token for trangparent interprocess reauthentication throughout the
digtributed system.

COTS and public domain one-time password systems are listed in Appendix C.
4.2.6.2 Biometric Authentication Systems

Although DoD Web applications must use DoD PKI asther primary 1& A mechanism, as noted earlier,
there may be applications for which athird factor of authentication is desired. In atacticad environment,

58
FOR INFORMATIONAL PURPOSES

Draft

for example, therisk of compromise may be higher due to the physica exposure of the computing
environmen.

Biometricsis becoming an increasingly viable as an dternative to usernames and Satic or dynamic
passwords, as a third authentication factor in Web applications (or a primary authentication factor in
non-Web gpplications). Used in conjunction with DoD PKI, biometrics can improve the security of the
PKI private keys. A biometric would be used to authenticate a user before granting that user access to
his or her private key stored on the same token (CAC) asis the biometric, or on the user’s PC hard
drive.

Please note that athough biometricsis one of the advanced security technologies (long with VPNS)
whose use is encouraged by the Office of the Secretary of Defense, definitive DoD policy on use of
biometrics has not yet been gpproved. A draft policy isonly now being circulated for review. Once
approved, this policy will become part of the DoD Directive 8500 (GIG Information Assurance [IA])
series. In addition, the CC medium assurance protection profile for biometric products currently exists
only as adraft under review.

If use of biometricsin an application is approved by the application’s owner and accreditor, the
developer should gtrive to use abiometric COTS product that has been approved by NSA, at least until
thereisa CC protection profile and NIAP certification process for biometric products. To date, only
biometric products from Bioscrypt have been approved by NSA or certified (low assurance) under the
CC. These Bioscrypt products, and other biometric productsin use within DoD, are listed in Appendix
C.

4.2.7 Pluggable Authentication M odules

A PAM provides a practica method for integrating an authentication service into non-Web backend
and legacy applications. The PAM acts as an AP layer between the gpplication and authentication
middleware or the operating system authentication service. The PAM obscures the implementation
details of the authentication mechanism, presenting the gpplication developer with asingle, consistent
API from the application regardless of the actua authentication mechanism being used. The PAM
manages the specific, unique interface calls to the underlying authentication mechanism, determining at
run time which authentication mechanism to invoke by checking the configuration set up by the loca
system adminigtrator. Thus, the PAM enables the authentication mechanism used by the gpplication to
be changed through a smple configuration parameter, without the application itsdf having to be
rewritten.

Many UNIX (and Linux) systems, including Solaris, support PAMs. To date, Windows does not
support PAMs, though at least one prototype PAM for Windows, developed by academia, is available
as open source software; thisis listed in Appendix C. In addition, Appendix C lists severa add-on
PAM implementations for UNIX systems. Application developers working on UNIX systems should
aso refer to the UNIX man page on PAMsfor the particular version of UNIX on which they are
developing the gpplication.

59
FOR INFORMATIONAL PURPOSES

Draft

4.3 AUTHORIZATION AND ACCESSCONTROL MECHANISM S

In adigtributed Web gpplication environment, it may make sense to implement authorization centrally
using athird-party authorization server such as Hewlett- Packard' s Praesidium Authorization Server (see
Appendix C). Such aserver can be as a central authorization rules engine to define and enforce access
rules for multiple Web and non-Web gpplications within the operating environment. Application
authorization then becomes part of the operationd infrastructure, and it is performed consistently across
goplications, instead of having to be implemented separately for each gpplication.

If the Web application must perform authorizations itself, its process for alocating authorizations must
be correct nonsubvertible, though it will have to trust the authentication system to tdll that entities and
objects to be authorized have been properly authenticated.

The authorization (privilege) information used by the gpplication may be stored and managed in the
exiging directory (LDAP, X.500) used by the PKI to store the user’ s X.509 certificates. The
retrievals—via LDAP (the application’ s authorization function will have to be LDAP enabled—of this
authorization information from the directory by the application should be secured via SSL when the data
areintrangt. The data at rest will be protected by the directory’ s access controls and other security
measures.

If standard user/group/world authorizations are inadequate, the application’ s authorization system may
have to implement ACL s and role-based authorizations, with finer-grained access controls (e.g., role-
based access control) implemented to support them. In messaging applications, role-based addressing
may be used to implement this granularity.

Because of the additional requirements for access control of classfied, sendtive, and Mission Category
| unclassified data, it may be necessary for the gpplication to augment the underlying operating system
access controls by ensuring that such data at rest are encrypted when they are stored on the Web
server (or application server). See Section 4.3.7.

4.3.1 Implementing a Single Application Entry Point

Most Web gpplications incorporate several component applications/systems besides the Web server,
HTML pages, and CGI scripts, and others that make up the core of the Web application. Examples are
an FTP (file transfer protocol) servers, SMTP (Smple mail transfer protocol) servers, POP (post office
protocol) servers, news servers, database management systems (DBMYS), directory servers, and proxy
servers. Often these components are distributed across multiple physica systems

Given its multicomponent capability, a Web porta can better protect the Web application and the data
it serves and processes. When the portd isimplemented, the Web server gpplication only dlows one
possible way for users to invoke or access these component programs, scripts, and data stores. For
example, write aWeb porta application that provides the single entry point through which users can
launch the application’ s component programs, issue queries to its database, and take other actions.
Within this Web porta, a checkpoint program will make the access decisions on behaf of the

60
FOR INFORMATIONAL PURPOSES

Draft

application, deciding, based on a user’s privileges, which of the gpplication’s component programs and
databases that user may access. By centrdizing al user access to asingle entry point, the Web portal
will dso make applicationlevd auditing easier to implement.

The Web portal should be the only way for users to access any gpplication components on backend
servers. Firewalls should be implemented between the Web server and the backend servers to prevent
users from directly connecting to those servers. Access controls on the backend servers should be
configured to prevent users from directly accessing the backend applications. All of the backend
sarvers, aswell as all Web portal nonuser processes that directly invoke or access those components,
should be protected from user access by setting their privileges higher than user. Findly, any backend
gpplications that have been Web enabled should have their older, non-Web user interface software
modified to prevent user access via any interface other than the Web interface. It is not possible to
prevent truly determined users from ng the backend servers directly from outside the Web
porta, but these measures will certainly inhibit the frequency of such direct accesses.

Although it provides the single access method for the users, the Web porta must not impede the
successful execution of processes within the Web gpplication, nor trusted processes externd to it, that
need to invoke component programs and access component data stores. For external processes, this
trust should be established through interprocess authentication (see Section 5.7). It may aso be
desirable to implement interprocess authentication of the Web application’s own processes before
alowing them access to highly sensitive data stores, programs, or scripts.

As noted before, the portal cannot and should not be expected to prevent determined users from
accessing and launching component programs from outside of the application. The portd itsdlf isan
gpplication, and contains no trusted computing base (TCB) or reference monitor with which to
authoritatively enforce access redtrictions. That iswhy it is criticd that the underlying operating system'’s
and DBMS s access controls be configured correctly and restrictively as possible to strictly control
direct user access to the programs and data protected by them.

Nevertheless, with its self-contained checkpoint program, the Web portd, acting as the application’s
sngle entry point, can control which interfaces to its components are presented to users. In thisway, the
Web portdl’ s graphical user interface (GUI) presentation to the user can be used to reinforce (versus
enforce) the Web server’ s and backend servers underlying access controls by presenting to the user
only the interfaces (e.g., Web links) to programs and data stores the user is privileged to access.

NOTE: Strict access control must be implemented on each file (Web page, CGI
script, etc.) accessible via a URL, regardless of how that URL isinput by the user
(typed in, bookmarked, or clicked link), and regardless of whether thereisa Web
portal.

4.3.1.1 Implementing the Web Portal’ s Checkpoint Program

The Web porta’ s self-contained checkpoint program will make the user-access-to-application
components decisions on behdf of the Web portd. In essence it will determine for the portal which

61
FOR INFORMATIONAL PURPOSES

Draft

Web links should be presented to a particular user, based on that user’ s authenticated identity, and
possibly the user’ s role, and the authorized access privileges associated with that identity or role, or
both. But before the checkpoint program can make these decisions, the user must be postively
authenticated to it, either viaan API to an SSO server, or via SSL (with an authentication screen
implementing an HTML username and password entry form as a backup).

In addition to performing user authentication, the checkpoint program should manage users
authorizations and track any security exceptions and violations that occur during the user-gpplication
session. It should decide what action should be taken in response to an exception and violation based
on its severity. The checkpoint program may associate a username with a specific role or user group
and grant the user’ s authorizations (access privileges) based on that role or group, instead of or in
addition to the user’ sindividud identity. In thisway, the Web portd and checkpoint program can be
used to implement atype of gpplication-level RBAC in sysemswhere RBAC is not provided at the
operating system levd.

The checkpoint program may also control and perform other gpplicationlevel security checks, including
sesson inactivity time-outs, and countermeasures to session hijacking and spoofing. The checkpoint
program’s security policy will determine which security checks are performed and in what order, and
how to handle fallures of security checks.

Implement the checkpoint program to be easy to integrate, portable, and extensible, enabling the same
checkpoint code to be reused in other Web applications with minima modification. To do this,
encapsul ate the gpplication-specific agpects within the checkpoint’ s security policy, which should be
linked into the checkpoint program as a run-time configuration library, rather than embedded into the
program itself. Thiswill make it possible for the same Web application to be used by different
organizations with different security policies.

Use of the checkpoint will make it easier for you to turn the application’s security controls off and on as
necessary for debugging and unit testing in the development environment. It will dso enable you to
experiment with aWeb application that may be used by different organizations. Y ou can observeits
operaion under the congraints of different security policies. Each organization’s true operationd
security policy can be turned on when the application is ready for operationa testing and deployment.

4.3.1.2 Limitations of and Alternatives to Web Portal Security

Web porta pages must not be relied on as access control mechanisms. They do not provide the
necessary assurance that a true access control mechanism requires. Just because aWeb link is not
present on the portal page does not mean it cannot be discovered (through guessing of the URL) and
typed into the browser’s“ Go to” or “ Location” line. Evenif directly typed URLS are rejected
through input vaidation, attempting to smulate access control through use of Web porta links and input
vdidation isaform of security through obscurity. Web pages not linked on a portd page can il be
discovered and accessed by determined users. For this reason, al Web resources behind the porta
page must be appropriately protected by the underlying operating system access controls.

62
FOR INFORMATIONAL PURPOSES

Draft

As mentioned, the Web server gpplication can be programmed to rgect any URL s the user submits by
directly typing in the browser’s* Go to” or “ Location” line, or by clicking on a stored bookmark,
particularly if those URLs are not dso coded aslinksin the portd page. If a URL isrgected, the
gpplication should return an error message to the user, warning him that he will be autometically
redirected to the Web portal page, and the gpplication should then perform this automatic redirect
within afew seconds of returning the error message. By forcing the user to enter the Web ste viathe
portal page, the application reinforces the message that the user can access Web application resources
only after being authenticated by the portal and by clicking those resources’ corresponding links on the

portal page.

However, just as excluding links from the portal page does not congtitute true access control, neither
does input validation and rejection of atyped-in or bookmarked entry. As stated before, determined
users will find ways to bypass the Web porta atogether to access restricted resources, so access
control must be applied to the resources themsalves (Web page files, databases, scripts, etc.) to truly
protect those resources from direct user access.

4.3.1.2.1 Funneling Users Through a Web Portal May Not Always Make Sense

In some applications, there may be no good security reason for requiring users to access links on the
Web ste only viaa Web porta. For example, a Web application that does nothing more than serve
unclassified datain static HTML pages or portable document format (PDF) downloads may not need to
control its users as dtrictly as does a Web application that grants its users access to gpplication
processes that can be used to read sensitive or classified data, or submit or manipulate data. [&A and
authorization may gill be required, but grict funneling of users through a single entry point may not be.

When designing the Web gpplication, determine whether thereis a security imperative (e.g., a security
policy directive) to prevent users from typing in URLs that are included as links on the Web portd page
or anywhere in the Web ste. Instead of implementing 1& A and authorization in away that requires users
to be funneled through a Web porta page, invoke the necessary 1&A and authorization on a per
page/per URL basis. Implemented this way, the Web application will not deprive the uses of the
convenience of being able to bookmark frequently visited Web pages or force them to navigate their
way back to those pages viaamain Web porta page each time they need to return to them.

If aWeb porta is determined to be a desirable convenience but not a necessary security measure, write
the application so that user 1&A and authorization processes are invoked for each Web page requested
viaavdid URL submitted by the user, regardless of the user’s point of origin. For example, the user’s
browser may be displaying another Web site atogether or a blank browser screen when the user
submits the URL. Vaid URLs may be those URL s that do appear on the Web gpplication’s porta

page, with input vaidation rgjecting any others. Or it may include dl URLs accessible from links on any
of the Web pages behind the Web porta. In short, valid URLs that are considered safe may be directly
typed in or accessed via bookmarks, with the smple act of requesting the URL triggering the I&A and
authorization to access the requested page. There would be no requirement thet the user mugt firg vist
the Web porta page to be authenticated and authorized.

63
FOR INFORMATIONAL PURPOSES

Draft

4.3.1.3 Distributed Access Management Systems

Web access management systems, such as RSA ClearTrugt, are one way to implement this kind of
checkpoint program functiondity, that isto centraly control and manage user access privilegesto Web-
based resources based on defined user attributes (e.g., roles), security policies, and other businessrules.
The access management system enforces the Web application’ s access control policy consgently
across al of the gpplication’s distributed components.

Digtributed access management systems generdly provide the following security servicesto the
distributed Web environment:

SSO

Authentication credentid management, with LDAP data abstraction layer (DAL) interoperability
to existing credential data stores/directories

User privilege management, authorization, and delegation management

Rules-based access control and security policy enforcement

End-to-end auditing and reporting.
See Appendix C for information on RSA ClearTrust and other Web access management systems.
4.3.2 Inter operation with System-L evel Access Controls
4.3.2.1 Web Server Access Controls

Most COTS Web servers enable access control for individual Web pages. For example, Netscape's
Web server can control individua page access ether through use of an .htaccessfile in the file system
directory or through specid directives that can be configured in the server’ s access control
adminigration page, which centrdizes al access control information in asingle location, instead of
digributing it across multiple .htaccess filesin multiple file sysem directories. Smilarly, a centrdized
access control administration page provides only asingle target for attackers.

Note that access control of the Web server’ sfiles, including Web application executables, Web pages,
scripts, and others are ultimately enforced not by the Web server gpplication, but by the underlying
operating system’ s file system access controls. These access controls must be configured correctly to
protect the files and the Web server executable itsdf, so that the Web server is authorized appropriately
at the operating system level to access and retrieve the HTML pages, CGI scripts and others it must
serve to users. Moreover, these access controls should be configured—and the Web server processes
should be assigned privileges-in such away asto prevent users from directly ng these resources
inthefile system if they manage to bypass the Web server.

64
FOR INFORMATIONAL PURPOSES

Draft

Please refer to the DISA Feld Security Operations Web Application Security Technica Implementation
Guide (30 September 1998) for more information on the configuration requirements for DoD Web
server access controls.

4.3.2.1.1 Dead Pathnames and URLS

Application responses to user submissions of nonexistent file pathnames or URL s should not reved any
information that could help an atacker understand the directory structure of the file system. Instead of
returning an HTTP 404 error, the gpplication should be programmed to redirect users who enter a dead
pathname or URL to a centra site map or index page. Some Web servers and gpplication servers that
serve dynamic pages automaticaly do this.

4.3.2.1.2 Relative and Truncated Pathnames and URLs Entered by Users

Regect dl relative pathnames and truncated pathnames/URL s entered by users. Present an error
message to the user who enters such a pathname or URL or automaticaly redirect him to the main Web
page or portd page (e.g., index.html or main.html). Or do both.

4.3.2.2 Database Management System Access Controls

Database access control should be performed by the DBMS only in conjunction with the underlying
operating system file system. Do not use database views as an access control mechanism. For one thing,
thisis not their purpose. More importantly, they do not provide the assurance that access control
requires. Attempting to smulate access control through the use of viewsis, at best, aform of security
through obscurity. Security through obscurity is both undesirable and insecure. Data not seen by a user
inaview can easly be discovered and accessed if those data are not also gppropriately protected by
the DBM S and operating system access controls.

Please refer to the DISA Field Security Operations Database Security Technical Implementation Guide
(30 October 1999) for more information on the configuration requirements for DoD Web server access
controls.

4.3.2.2.1 Time and Date Samps and Data Access Notification

In the case of aDBMS, time and date stamps will automatically be applied to each database update,
and the DBMS notify the user of the times and dates on which each data item was created and last
accessed.

In Web applications, it may also be desirable to include smilar creation/modification time/date
information on frequently- changing Web pages (e.g., by including an HTML tag that indicates “last time
updated” for agiven page).

65
FOR INFORMATIONAL PURPOSES

Draft

4.3.3 Least Privilegefor Application Processes

Leadt privilege in applicationsis a function of how system privileges are granted to application processes
by the operating system, as well as used and relinquished by those gpplication processes. The
gpplication developer should ensure that the gpplication as awhole, and each individua processinit, is
not granted privileges that exceed the minimum privileges the application/process needs to perform its
current operation. Moreover, the gpplication and process must not retain any privilege after the
operation it needed the privilege to perform is completed. For example, a process should not be granted
write privileges if it requires only read access to complete an operation, even if the same process will
later need write privileges. The write privileges should be granted only when they are actualy needed
and should be revoked as soon as they are no longer needed.

Ancther way to ensure least privilege is to develop the gpplication so that very few if any of its
component programs or processes ever need to be privileged or trusted.

If the application, particularly a classified gpplication, defines user accounts, and any of those accounts
are privileged, the gpplication must provide role-based access control (RBAC) that can be used to
enforce separation of duties and least privilege. See Section 4.3.4.

4.3.3.1 Separation of Duties

Assign only appropriate system roles to gpplication processes, that is, roles that grant to each process
only the privileges it needs to perform its functions. Separate system roles should be created for
privileged processes and unprivileged processes, & a minimum.

4.3.3.2 Separation of Roles and Separation of Privileges

The roles assigned to gpplication processes (and recognized by application access controls) should
directly correspond to the various duties assigned to those application processes. Granting a particular
privilege to only avery few gpplication processes will make it much easer to determine whether those
privileges are being used securely. As noted earlier, a process should dways give up aprivilege
immediately after using it.

Implement commands that require different privileges as separate, smdl, smple executables thet call
each other, instead of alarge, complex executable containing multiple commands. By doing so, each
command will require fewer changes of privilege leve during its use. Often, a series of multiple small,
untrusted programs can accomplish the same task that a sngle large, complex, trusted program would
otherwise perform. The advantage of an application made up of smal, smple executablesisthat it will
be easier to troubleshoot problems (both in generd operation and in privilege handling), and much eesier
to accredit.

4.3.3.3 Minimizing Resources Available to Application Processes

Minimize the computer resources that are made available to each process (For example, use
ulimt(),getrlimt(),setrlimt(),getrusage(),sysconf(),quota(),

66
FOR INFORMATIONAL PURPOSES

Draft

quot act | (),andquot aon() inUNIX; thereisdsopam | i m t s for PAM processes). In
thisway you can limit the potential damage if a particular process fails or is compromised. This
approach will help prevent denid of service attacks on the application. In Web servers, set up a
separate process to handle each sesson and limit the amount of CPU time, and the like, that the session
in each process can use. In thisway, any attacker request that hogs memory or CPU will be prevented
from interfering with any tasks other than in its own sesson. Although an atacker can establish many
sessons, designing the sessons to be atomic and resource limited will make it more difficult for the
attacker to achieve denia of service.

4.3.3.4 Separation of Domains (Compartmentalization)

Separation of roles and privilegesis difficult to implement if there isinadequate separation of domains.
Together, the two controls ensure that users and processes are able to perform only tasks that are
absolutely required, and to perform them on data, in memory space, using only those application
processes, and so forth to which they absolutely must be granted access to accomplish those tasks.
Compartmentalizing users, processes, and data aso helps contain any errors and violations.

Note that NT and most UNIX (and Linux) access controls cannot isolate intentionally cooperating
programs. If the cooperation of malicious programs is a concern, the application should be implemented
on asystem such as Trugted Solaris, which implements mandatory access controls and limits covert
channels.

4.3.3.5 Least Privilege in Web Applications

Programs and scripts that run as the Web server’s “nobody” user should be modified to run under a
specific username. “Nobody” is an anonymous account and should be disabled on the Web server.

Do not dlow the program or script to create filesin world-writable directories, such as the /tmp
directory. See Section 4.4.1 for adetailed discussion of handling temporary files and directories.

Minimize the amount of data that can be accessed by the user. For example, in CGI scripts, place dl
data used by the CGlI script outside of the document tree if there is no reason for users to see those
data directly. Not providing an explicit link to the datawill not prevent determined users from accessing
the data.

4.3.3.5.1 Least Privilege and Java Sandboxes

Though Java applets are run in a sandbox by the browser, whether developing one's own applets, or
using COTS gpplets, the developer should determine and implement a security policy that minimizesthe
privileges granted to the applet, that is, implementing least privilege for the applets.

In addition to least privilege, however, a sandbox mechanism can be a desirable way to limit the extent
of possible impact that even non-Java gpplications may have on their operating environment. Appendix
C includes some non-Java sandbox tools.

67
FOR INFORMATIONAL PURPOSES

Draft

4.3.3.6 Least Privilege in Database Applications

If the Web application calls a database (e.g., viaa SQL query interface), limit the rights of the
application's database user role to only the specific set of stored procedures explicitly defined for that
user. Implement as much functiondity as possible within that set of stored procedures, so that if a
hacker manages to force arbitrary stringsinto a SQL query, the resulting damage will be limited to that
set of procedures only.

Alsp, if the gpplication mugt direct aregular SQL query using client-supplied data, wrap the query in a
wrapper that limitsits activities (eg., sp_sql exec).

Most mgor RDBMSs provide packages, libraries and APIs that enable them to interface, as backend
databases, with Web frontends. For example, Oracle provides Java and PL/SQL Web interfaces, as
well asthe fully integrated Oracle Web gpplication server, a Web server through which clients can
access both static HTML pages and dynamic content stored in Oracle databases.

4.3.4 Role-Based Access Control

RBAC isanondiscretionary access control mechanism that alows and promotes central administration
of an organizationa security policy. The Nationd Ingtitute of Standards and Technology (NIST) is
sponsoring agreat ded of research in the area of RBAC, including RBAC for Web servers. Seeits Ste

one of thefirst CC protection profiles published specifies the evauation criteriafor RBAC.

RBAC needs to be implemented a a minimum for the privileged users and accounts of the Web
goplication, and it must enforce separation of roles and least privilege (imperative for classfied
goplications). If not supported by the operating system, the RBAC logic may be embedded into the
gpplication to increase the granularity of access control and enable enforcement of gpplication-specific
policies. Embedding RBAC into the gpplication itself has the disadvantages of difficulty and expenseto
develop, lack of congstency in the definition of roles and enforcement of RBAC policy across
gpplications that may touch the same data, and lack of scaability (i.e.,, to accommodate changesin the
Sze and digribution of the user community).

One dternative to embedding RBAC logic into the gpplication isto integrate an RBAC add-on into the
underlying operating system. NIST has sponsored development of RBAC operating system add-ons for
UNIX and Windows NT. Appendix C provides links to this and other add-on RBAC systems.

A second dternative is to implement access control middleware, such as common object request broker
architecture (CORBA) access control middieware. This middleware provides a scalable, consistent
externa RBAC capability that can be used by multiple applications in the operating environment.
Access control middleware is less difficult and expengve to implement than embedded RBAC, and it is
easer to evolve and administer over time. However, the granularity of the policies supported isinferior
to the granularity that can be custom defined in embedded RBAC; because the middleware is COTS,
its RBAC policy-ddfinition isfarly generic because of its need to support many different organizations

68
FOR INFORMATIONAL PURPOSES

Draft

policies. For most Web gpplications, however, the granularity and specificity of RBAC policies
supportable by middleware will probably be sufficient.

4.3.5 Additional Web Content Access Control Measures

Some further access control measures may be implemented to protect Web content from being copied
and misused (e.g., Web page defacement; plagiarism of Web content). They inhibit users from

Copying HTML source code
Cutting and padting text content
Screen capture.

Notice that we said “inhibit” rather than “prevent,” because it is probably impossible to absolutely
prevent adetermined plagiarist or hacker from printing the content of a Web page and scanning it with
an optical character reader or retyping it. However, these techniques should help inhibit the less
determined, less resourceful hackers and casud plagiarists from performing these actions.

4.3.5.1 Inhibit Copying of HTML Source Code

To inhibit copying of HTML source code, consder use of an HTM L authoring tool or add-on that
enables source code encryption, such as Authentica's NetRecal and Andreas Wulf Software sHTML
Guard (see Appendix C).

Unfortunately, there is no way the Web server can prevent the browser from being able to display
HTML source code in the first place. The user can choose to turn off source viewing in the browser, but
this cannot be controlled by the server. If HTML source viewing is seen asamgor problem, you may
want to code the main elements of the Web ste (navigation, header, etc.) in a Java applet, if possible,
instead of usng HTML. Unlike HTML source, Java applet source code, aswell as CGI source code
cannot be displayed using a browser’ s View Source function.

4.3.5.2 Inhibit Cutting and Pasting of Text Content

Another countermeasure for inhibiting the cutting and pasting of Web content is to serve content as
Postscript Document Format (PDF) files instead of HTML. Although it possible to cut and paste PDF
files downloaded and displayed in an Acrobat Reader (versus viathe Acrobat browser plug-in, which
does prevent PDF cut and paste), the process is somewhat awkward and may inhibit casual plagiarism.

An even more effective approach is to scan any text documents that you do not want to be cut and
pasteinto .GIF or .JPG files, and serve them as images rather than text. While these imegefilesin thelr
entirety can be copied and pasted, the text within them cannot be extracted eectronicaly.

None of these technical countermeasures can prevent a user from printing a hard copy of aWeb page
(even one posted as an image file) and scanning it with an optical character reader. However, some

69
FOR INFORMATIONAL PURPOSES

Draft

COTS products designed to control copyright-protected material do advertise the ability to prevent
browsers from sending protected Web content to a printer. But even such products cannot prevent a
determined user from smply rekeying the text contained in a Web page.

4.3.5.3 Inhibiting Screen Capture

To prevent screen capture by abrowser, write a plug-in that wraps the system-level commands that
implement the browser's screen capture function. This "wrapper” plug-in, when ingtdled in the browser,
will effectively disable those commands and thus, prevent the screen capture process from occurring.

4.3.6 Labeling and Marking of Output (Displayed and Printed)

If the Web application handles Privacy Act data, proprietary data, or classified data, labeling or marking
of output by the application will be required. For labeling of Web pages, one gpproach isto use
metatags to Sore the labd information directly inthe HTML source of the page, to be displayed as part
of the page in the user’ s browser. If the Web page is printed from the browser, this labe will be
included in the printed outpuit.

4.3.6.1 Platform for | nternet Content Selection Labels

Another possihility isthe use of a platform for Internet content selection (PICS)-compliant Iabelswithin
HTML source code to implement sengtivity labels. Invented to add filterable adult content and smilar
warnings to Web pages, PICS can be used to define and gpply other labels, induding sengtivity labds

PICS should be viewed as a convenience—a mechanism that can be used to define and apply
informationa sengtivity labelsto Web pages. The labels would be displayed on those pages by Web
serversthat are able to distribute PICS labels dong with Web documents. There are also proxy servers
designed to filter Web content based on PICS rules. Such filtering can be used to prevent distribution of
pages with a certain label to any users who are not authorized to see information with that labd.
However, PICS should not be seen as an aternative to true mandatory access control in gpplications
implemented to add informationa sengtivity labels to Web pages and distribute them based on those
labels.

4.3.7 Encryption of Data at Rest to Augment Access Controls

If the underlying access controls are not considered trustworthy to protect senstive data handled by the
gpplication, the developer may write the gpplication to encrypt any data it saves to the underlying Web
serve file system or backend DBMS.

Encryption of data at rest to augment the access controls meets severa security objectives that Web
server or DBMSS access controls aone cannot meet:

Protection of datafrom the insder threat
Dataprivacy

70
FOR INFORMATIONAL PURPOSES

Draft

Need-to-know separation in non-compartmented systems.
Appendix C lists severd tools for encryption of data at rest.
4.3.8 Session Control
4.3.8.1 Session Management Schemes

Because HTTP is a dateless protocol, the gpplication must include a session token scheme that enables
al of ausaer’s multiple requests to be associated with each other within a sesson. Each user request or
transaction is authenticated by the user’s sesson token.

After the user’s browser is authenticated by the Web server, a sesson token is transmitted from the
Web server to the browser embedded in acookie, in a gatic or dynamicaly generated URL, or asa
hidden field in an HTML page. If cookies, URLS, or HTML are used to convey session tokens, they
should be transmitted usng HTTPS (rather than HTTP) over an encrypted channel crested usng
SSL/TLS. Encryption of the connection will protect the session tokens from capture and replay or
tampering by an outsde attacker. An attacker could use the captured token to insert himsdlf into an
exiging sesson without authentication.

The sesson management scheme used in the Web gpplication must enable the administrator to define
the maximum number of smultaneous sessions to be alowed to each username, the session time-out
(see Section 4.3.8.2), and other aspects of how the session should be established, maintained, and
managed.

4.3.8.2 Session Time-Out

Authenticated session tokens on the Web server should be forced to expire, either after afixed period
of time, or after amaximum number of requests and transactions have been performed. Token time-out
minimizes the possibility of atoken being hijacked or brute-force attacked. Application session time-
outs should be implemented in both directions. client to server and server to client.

Time-out of atoken may mean that the valid user will have to reauthenticate to the gpplication to receive
another token. Or the server may transparently (without user reauthentication) do time-out and
regenerate the user’ s session token. In either case, token time-out narrows the window during which an
attacker can exploit atoken to hijack a sesson. In addition, whether the current session token has
expired or not, when a user tries to perform a sengtive transaction-such as sensitive data trandfer,
financid transaction-the server should require the user to reauthenticate or, a a minimum, should expire
and reissue the user another session token immediately before alowing the sengtive transaction.

The sesson management cgpability of the gpplication must dso dlow the administrator to set an
inactivity time-out threshold, that is, the number of minutes without any user interaction with the server
application, beyond which a sesson time-out should be indtigated. If thisinectivity time-out is not set, or
if it isof longer duration than the session token time-out, the token expiration will do atime-out the
sesson anyway. For this reason, you may want to write the inactivity time-out configuration process to

71
FOR INFORMATIONAL PURPOSES

Draft

offer the administrator severd options for inactivity duration before time-out, with the longest selectable
duration being equa to the duration of the session token.

Finally, when the user logs out of the gpplication (or asesson inactivity time-out occurs), the application
should overwrite any session cookies and other mechanisms used to Store session tokensin the user’s
browser. That would prevent another person from stting down at the user’sworkgtation in the user’s
absence and modifying or reusing a stored session token.

44 |IMPLEMENTING CONFIDENTIALITY
4.4.1 Application Support for Object Reuse

In addition to the object reuse capabilities of the underlying operating system and the backend DBM S
(if any), the Web application itsdlf should provide some basic capabilities for overwriting sendtive data
in memory immediately after the data are used. That would minimize the possibility that they may be
disclosed to unauthorized users. Such senditive data include passwords, secret keys, session keys,
private keys, or any other highly sensitive and secret data. Furthermore, applications should be
scrupuloudy correct in deleting at the end of a sesson al temporary files they creete during the sesson.
Findly, gpplication programs should not be dlowed to generate core dumps when they fall.

4.4.1.1 Object Reusein Java Applications

In Java, do not use the type String to store a password, because String isimmutable—that is, they are
not overwritten until garbage collection isinvoked. Even after garbage collection, Sring may not be
reused until sometime in the digtant future. Insteed of String, use char[] to store secret datain memory;
thiswill ensure that the data will be immediately overwritten after use.

4.4.1.2 Avoiding I nadvertent Copies of Sensitive Data

Avoid writing application functions that creste temporary files or file copies. If such afunction cannot be
avoided, ensure that the temporary files and copies are purged from the disk and from memory as soon
as the processes that create them and use them are terminated. Ensure that the entire file is actudly
erased or overwritten (e.g., with zeroes), not just the pointer to thefile.

4.4.1.3 Preventing Core Dumps of Sensitive Data

Programs should not be alowed to perform core dumps except during testing. Although corefiles can
fill up afile system, they may aso contain confidentia information that can be discovered by an attacker
who forces a core dump. For example, if a program fails, by default many operating systems creete a
corefilethat savesdl of the program’s memory. Depending on when the failure occurs, thisfile may
include passwords or other sengtive data remnant in memory at the time of the failure. In some cases,
an attacker can actualy use the fact that a program dumps core to bregk into a system.

Instead of dumping core when a program fails, have the program log the gppropriate problem and exit.
In addition, limit the Sze of the corefileto 0 (eg., using setrlimit or ulimit in UNIX), to disable

72
FOR INFORMATIONAL PURPOSES

Draft

creation of cores so that an attacker who hdts the program will not be able to find any secret valuesin
the core dump.

4.4.2 Confidentiality of Configuration Data and include Files

Place include files and configuration files outside of the Web documentation root in the Web server
directory tree. Thiswill prevent the Web server from serving these files as Web pages. For example, on
the Apache Web server, add a handler or an action for .inc (include) files

<Files *.inc> Order allow deny Deny fromall</Files>

Place the include filesin a protected directory (e.g., .htaccess), and designate them asfiles that will not
be served. Also, use afilter to deny accessto thefiles. For example, on the Apache Web server use:

<Files ~ "\.phpincludes"> Order allow deny Deny from
all </Fil es>

If full regular expressons must match filenames, in ApacheusetheFi | esVat ch directive.

If theinclude fileisavalid script file to be parsed by the server, make sure it is designed securdly, and
does not act on user-supplied parameters. In addition, change al file permissonsto diminate any
world-readable permissions. Idedlly, the permissons will be set so that only the uid/gid of the Web
server can reed thefiles.

Unfortunately, such permissions limitations can be circumvented by an attacker who is able to get the
Web server to run his own scripts to access the files. One countermeasure to this problem isto run
different copies of the Web server program: one for trusted users, and a second for untrusted users,
each with appropriate permissons. This approach is difficult to adminigter, however. Yet if the
percaived threet is greet, the additiona adminigtrative overhead may be worth it.

4.4.3 Confidentiality of User Identities

Neither the Web server gpplication nor the browser should transmit user identity informetion in the
clear. User identities, and any other persona information should only and aways be tranamitted over
SSL-encrypted channels. In addition, user identity and persona information stored by the Web server
should be strongly protected by the server’ s access controls and perhaps also by stored-data

encryption.
4.4.3.1 Do Not Hard Code User Credentials

Avoid the unfavorable practice of hard coding credentiasin a Web page or in any other sourcefile.
Instead, store user credentias and other sensitive security information centraly, on an adequeately
protected server that is audited.

73
FOR INFORMATIONAL PURPOSES

Draft

4.4.3.2 Pass Sensitive Data Using POST, not GET

Do not pass senditive data as parametersin GET query strings. When sensitive data are to be passed to
the server, do not send them as a parameter in the query string. For example, do not structure URLSs as
illustrated below:

http://ww. site.gov/process_card. asp?cardnunmber =1234
567890123456

Because HTTP requests are logged in to the logs of the Web server aswell as by whatever proxies
exig between the browser and the server (including transparent proxies), even if the request in the
HTTP dring is sent via SSL, the request will be decrypted and logged as cleartext. Or it may be
Base64 encoded but not encrypted. Here is an example:

2000- 03-22 00: 26: 40 — WBSVC1 GET /process_card. asp
cardnumber =1234567890123456 200 0 623 360 570 80
HTTP/ 1.1

Mozil | a/ 4. 0O+(conpati bl e; +MSI E+5. 01; +W ndows+NT) - -

In addition, the entire URL may be stored by the browser in the browser’ s history file, potentidly
exposing the sendtive information to anyone who can access the client system. Instead of GET, use
POST, asfollows:

1. Usethe HTTP body to passthe sengtive information. The HTTP body is not logged, and thus
the log will not contain sengtive parameters.

2. Use SSL (with 128-bit minimum key length) to encrypt the information in trangt.

3. If thedataaretruly senstive, make sure they are encrypted when stored, both on the sending
(client) and recaiving (server) Sides.

4.4.3.3 Exclude Confidential Data from Redirects

HTTP includes several redirect response types, telling the user that a Web page that no longer exists at
the URL submitted by the user has moved to a different location and in many cases autometicaly
redirecting the user’ s sesson/connection to that new location. Attackers can hijack valid HTTP
redirects or inject spurious redirects to reroute the user’ s session or connection to a Web page that
triggers malicious code that causesillicit actions to be taken on behdf of legitimate users who think they
have been redirected to a valid Web page.

A specific security problem arises when a Web page that causes aredirect can be accessed only after
the user is authenticated and authorized. If basic authentication or HTML forms-based authentication
with cookies is used, the user’s browser will store that password or authentication cookie and present it
each time the accessed site demands reauthentication of the user and session.

74
FOR INFORMATIONAL PURPOSES

Draft

If an attacker manages to maicioudy redirect the user to a Web page under the attacker’ s control, that
page may be programmed to look like alegitimate page, and to perform the action the user expects. So
the user’s browser will provide that page with the user’ s credentials, which it has stored. In thisway, the
attacker is able to collect the credentias of unsuspecting users.

The potentid for thistype of attack is yet another reason that DoD Web applications should not use
Web server basic authentication nor HTML-forms authentication with credentia's subsequently stored in
abrowser cookies. Authentication based on X.509 certificates transmitted via SSL is not vulnerable to
this type of attack.

4.4.4 Validate URL Pathname Extensions

A URL, a itssmpleg, isthe pathname to the file system directory location of a\Web page on the Web
server. However, in some Web applications, this pathname is gppended with other information, such as
aquery part containing variables that instruct the Web server to handle the user’ s accessrequest in a
certain way. Hereis an example:

http://ww. org. gov. m | /PKIsystens/platformtech-
features. xm ?page=9

Inthat URL, the user has requested the file tech-featur es.xml, which is stored in the directory
/PKIsystems/platfornv on the Web server host org.gov.mil. By gppending the URL extension
“?page=9’, the URL requests the server to return not just the whole document tech-features.xml, but
the specific page (9) within the document.

URL extensons can be used to ingtruct the Web server to do many actions. For example, consider the
following URL.:

https://ww. CA. gov. m |/ cgi-bin/check-rev. cgi ?02a56¢
The problem with URL extensions arises when a hacker intercepts a URL in trangit from browser to
server and modifies the URL extension to request the server to perform an action that is unexpected or
destructive. For this reason, the Web server application must be able to recognize questionable URL
extensions sent to it by browsers, to vaidate the URL to ensure it does not contain such an extension,
and to truncate a URL after the end of the file pathname to remove any extension that does seem
suspicious.

A specific threst related to URL extensonsisthat of denid of service. On certain Microsoft 11S servers,
an attacker can increase the Web server’s CPU use by requesting acomplex URL that includes
intentionally malformed extenson information, such as alarge number of dots and dashes. |IS versons
4.0 and 5.0 are vulnerable to this form of denid of service attack. Microsoft has released a patch for
this vulnerability.

75
FOR INFORMATIONAL PURPOSES

Draft

445 Limit Data Returned to Users

Limit the data returned to the user to what is specificdly requested by the user. Avoid giving more then
the bare minimum of information to untrusted users about gpplication processng Satus. Report only that
atransaction or process has succeeded or failed, possibly with a brief, generic explanation of the failure.

4.4.6 Do Not Trust Browsersto Store Sensitive Data

Never treat a browser as trustworthy rely on abrowser for storing important or sensitive data. Such
data should be stored on the server and protected appropriately. If the browser frequently needs
important nonsengitive data, it should store a copy obtained from the server in cache a the beginning of
asession. It should also be configured to purge cache a the end of a session (when the browser is shut
down). Sengitive data should not be stored on browser platforms at al unless there is a mechanism for
storing the data in encrypted form, with trustworthy management of cryptokeys.

The message will be repesated severd times in this document: Never trust a browser in any security-
related or sengtive transaction.

4.4.7 Application Integration with Data Encryption M echanisms

For some gpplication functions, performance requirements may entall the use of anencryption
implementation that is faster and more efficient than the symmetric encryption capability embedded
within the Web gpplication’s DoD PKI implementation. Appendix C lists some encryption technologies
approved by the NSA that may be integrated into applications.

When eva uating encryption products for use in the Web application, consider whether the product can
be eadily integrated into, or caled from, the application. Consider several questions. Does the product
include itsown AF! or cdl-levd interface (e.g., in a software library), or will this interface have to be
custom-implemented by the developer? Also, does the encryption product—incuding its API/interface to
the application-gtrictly protect the data to be encrypted from disclosure while those data are in cleartext
form? Does the product adequately protect the encryption keys and key management materid it uses
from interception and tampering? Does it perform key management and certificate management and
handling correctly, such as correctly responding to and acting on key revocetion ligts, certificate
revocation lists, and ont-line certificate status protocol (OCSP) transactions.

If the cryptographic material used by the encryption product is stored and retrieved from a directory (as
is the case with the DoD PKI), the underlying file system access controls, as well as the directory’s own
access protections, must be configured correctly to protect that cryptographic materia from
compromise. In the case of the LDAP directories used in the DoD PKI (and in most other PKIs), it has
been reasonably argued that neither the directories themsdlves, nor LDAP protocol, istruly secure. It is
crucid that your Web application makes sure that the channel over which LDAP is used to tranamit
cryptographic materias (such as cryptokeys, certificates, key revocation lists, certificate revocation lists,
OCSP transactions, etc.) are encrypted via SSL and in some cases dso a VPN (such as IPSec) at the
trangport or 1P layer.

76
FOR INFORMATIONAL PURPOSES

Draft

Appendix C provides more information on the security criteriathat you should use when evauating
third-party encryption and other third- party security technologies for inclusion in Web applications.

NOTE: The next version of this document will include a list of standard and
preferred APIs and methods to be used in DoD applications.

4.4.7.1 Encryption Before Transmission

Web-basad gpplications should encrypt dl communication with a user that includes sengtive information
by using the HTTPS protocol over an established SSL connection, rather than HTTP over a
nonencrypted connection.

Nor should you use HTTP GET requests to submit forms that contain sengtive data, even when
transmitting over an SSL-encrypted connection. GET causes the data in the HT TP request to be
encoded in the Request-URI (that is, uniform resource identifier), which many Web servers, proxies,
and user agentslog in cleartext—atarget for hackers seeking sengitive user data. Instead of GET
requests, use HTTP POST, which isintended specificdly for submitting HTML forms without encoding
the contents in the Request-URI.

4.4.7.2 Encryption of Data at Rest

The application should encrypt any sengitive data that it stores in a database, file system directory, or
backup that does not provide sufficiently strong access controls to protect those data from possble
compromise. Thisis particularly important for backup disks that may be stored or transported without
aufficient physical protection.

The cryptokeys for decrypting the stored data should not be stored on the same physical system or
medium that contains the encrypted data.

For information on use of encryption of data at rest to augment inadequate access contrals, refer to
Section 4.3.7.

45 IMPLEMENTING DATA AND CODE INTEGRITY MECHANISM S

Integrity of data and mobile code transmitted or stored by DoD Web gpplications may be assured using
electronic integrity mechanisms such as hash or digita sgnature. These eectronic integrity mechanisms
must be implemented using DoD-mandated (or recommended) technologies. In the case of hash, the
DoD and the U.S. Federd Government in generd have both mandated the use of the SHA-1 hash
agorithm (FIPS PUB 180-1), and not MD5, whenever secure hash is required.

The DoD PKI supports RSA asits digitd sgnature agorithm and provides the option of using the FIPS
Digitd Signature Standard’s DSA agorithm. Because both agorithms are to be supported by DoD
PK1, the digital Sgnature vaidation software implemented in DoD Web applications should be able to
vdidate digitd Sgnatures generated using either RSA or DSA.

77
FOR INFORMATIONAL PURPOSES

Draft

The technicd implementation of adigita Sgnature mechaniam and a Sgnature vaidation mechanism for
protection and verification of data integrity will be the same as the implementation of digitd sgnature for
nonrepudiation. See Section 4.7 for detalls.

4.5.1 Implementing Hash

To protect the integrity of data transmitted between server and client, the two entities need to perform
an integrity check in addition to encryption. That is because encryption does not prevent an attacker
from randomly changing the encrypted data stream, which will transform the data it containsinto a
collection of nonsengicd characters.

The standard cryptographic integrity mechanism supported by the DoD PKI is the hash, acdculaion
based on characteristics of the data to be protected, It is appended to the transmitted data so that the
recipient can compare the transmitted ca cul ation gppended on the data sent with the new caculation he
performs on the same data, usng the same caculation technique. If the two cal culations—the one sent,
and the new reca culation—result in the same hash value, the data are proven not to have been changed
during the transmission.

It is not adequate to use the hash function directly to caculate the hash va ue to be gppended to the
data. That could expose the data to an extension attack in which an attacker can use the hash value to
derive the caculation used, add his own data to the file and then compute and apply a new hash to the
data. The recipient would not be able to detect the change of hash.

Instead of hash aone, a hashed message authentication codes (MAC) better ensures the integrity of
data transmitted between two entities. A MAC based on a cryptographic hash function that usesa
secret key available to both entitiesis called an HMAC (Hash-MAC). RFC2104 defines the
cryptographic formulafor HMAC as

H(k xor opad, H(k xor ipad, data)).
where H isthe hash function (in DoD PKI, thiswill be SHA-1), k isthe shared secret key, and data is
the data to be protected. The integrity mechanismfor DoD applicationsis referred to HMAC-SHA- 1.
HMAC is at least as sirong as the hash function it uses.

4.5.1.1 Hashing Data to Prevent Tampering

To prevent users from tampering with transmitted data, we are providing an example of hashing an
HTML form, with the hash used to prevent tampering with, aswell as hijacking and replay of, that form.

NOTE: The process for calculating and applying the HMAC to data is the same,
regardless of the type of data to be hashed.

1. Implement a message authentication check (MAC) on the HTML form, usng a SHA-1 hash.

2. Cdculatetheinitial hash usng a secret hash key available to both the browser and the server.
This hash key should be of alength gppropriate for the sengtivity and mission criticdlity of the

78
FOR INFORMATIONAL PURPOSES

Draft

7.

8.

data being hashed (refer to Information Assurance Technical Framework [IATF] Verson 3.0,
Section 4.5, for specific key lengths to be used when hashing data of different misson
criticdities and sengitivities). Also, the hash key should contain upper and lower case
aphanumeric characters that do not spell out aword in any human language.

Determine which form fields should be hashed to make them tamperproof.

Add hidden fidlds that contain cons stency- checking information to the form. Such information
may incdude

Expiration time for the form
Name of the script that is supposed to process the form
User's |P address.

Concatenate the secret key, the contents of the tamperproof fields, and the consistency-
checking information in the hidden fieds into one long string. That concatenation comprises the
MAC for thisform.

Compute the hash of this concatenated data.
Convert the computed hash into a printable hexadecima string.

Include within the form a new hidden field containing this hash.

When the form is returned to the server-side script by the user, the server gpplication should do the
following:

1.

Recover from the form: the hash, the tamperproof fields, and the cong stency-checking fidds,
making sure that al expected fields are present.

Verify that the congstency- checking fields match their expected vaues.

Recompute the hash using the same formula as before and compare the recomputed hash to the
hash retrieved from the form.

Recognize that if the two hashes match, it is highly unlikely that the form has been tampered with
or replayed.

4.5.2 Integration of Digital Signature Mechanisms

4.5.2.1 Interface from Application to Digital Signature Mechanism

Depending on the language in which the application is being written, the language itsef may provide a
predefined API or call interface to the digital Sgnature mechanism. For example, in Java, the

79
FOR INFORMATIONAL PURPOSES

Draft

java.security package includes the public abstract classes S gnatureSpi—the service provider interface
(SP) to adigita sgnature dgorithm—and Signature-which is an extenson to SgnatureSpi. See

Check the congtructs of the programming languages in which the gpplication is being written to
determine whether system cdlsto digital sgnature are provided. If they are not, the digital sgnature
mechanism itself should provide an APl as part of the software devel oper kit (SDK) supplied by the
vendor.

4.5.2.2 Digital Signature and Validation Capabilities for Browsers

Digital sgnature and signature vaidation in browsers is supported by various plug-ins, some of which
are specific to the type of content to be digitdly sgned or vdidated. The digita signature capability in
the browser will be used mainly by usersto digitaly sgn HTML forms content before transmitting those
formsto the server.

Browser validation of digita sgnatureswill be used mainly to vaidate Sgnatures on mobile code. For
example, Netscape Communicator browsers offer an optiond HTML form signing capability. The Java
Pugin 1.3 enables user verification of RSA digital signatures applied to Java applets downloaded to the
browser, s0 that the user can vaidate the Sgnature before deciding whether to dlow or disdlow
execution of the gpplet.

A lig of HTML digitd sgnature and code signature validation browser plug-ins appears in Appendix C.

If the browser is dso used asthe e-mal dlient, as with Netscape Mail, the client mail application should
provide security functions that support digitd sgnature of e-mail messages. It should use DaD PKI
certificates and vaidation of certificates and digital sSignatures on recelved messages.

4.5.2.3 Digital Signature Validation by Server Applications

The digitd sgnature validation capability in the server application must correspond with the digital
signatures provided by the browser. For example, if sgned HTML forms from Netscape browsers are
expected, the server gpplication must have access to the Netscape signature verification tool on the
Web server to process those sgned transactions.

Anocther dternative is have digitd sgnature validation performed on behdf of the application by a
separate Sgnature validation system, such as KyberPass s Vdidation TrustPlatform (see Appendix C)

4.5.2.4 Protection of Cryptographic Material Used for Digital Signature

The cryptographic materid (certificates or keys) used by applications for digitd Sgnature should be
protected to the same extent and in the same way as are the cryptographic materias used for
authentication, encryption, and hash.

80
FOR INFORMATIONAL PURPOSES

Draft

4.5.2.5 Preventing Web Page Defacement

To avoid the problem of Web site defacement, the server should never accept or post (publish) HTML
files or other Web content until that content has been proven to have originated from a known, trusted
source authorized to publish content on the Web server. Neither the originator’s I P address nor a Web
form referrer header congtitutes a trustworthy proof of origin, for both 1P addresses and referrer
headers can be tampered with.

To ensure that Web content to be published comes from a trustworthy source, require dl valid Web
content authors to digitaly sign their files. The Web server should vaidate the digital sSignature on each
filewhen it is uploaded to the server and rgect any files that have not been digitdly sgned by an
authorized Web author. In thisway, the digital Sgnature acts as an integrity mechanism to prevent
serving of defaced Web pages that hackers may have stored on the server.

A high-end system that is gpecifically designed to prevent serving of fraudulent Web content is Gilian
Technologies ExitControl, and particularly its G-Server ExitControl appliance. Instead of relying on
usersto vaidate digita sgnatures on Web content, the G- Server vaidates those sgnatures to verify that
Web pages have not been tampered. It does so before serving those pages to the user’ s browser. See
Appendix C for more information.

4.5.2.5.1 Digital Sgnature of Web Content

There may be instances in which Web authors wish to digitally sgn Web content, to proveits
authenticity or provide nonrepudiation of its source, as wel asto provide an integrity mechanism to
prevent serving of defaced Web pages. HTML, XML, PDF files, and even backend database entries
may need to be digitally signed before that content is placed on the Web server to be made accessible
to users viathe Web gpplication. Thisdigital signature capability will be of interest to Web gpplication
developers aswdll, if they are dso responsible for the integrity of the Web content presented by their
goplications.

A specific discusson of XML digital sgnature based on the new XML digitd sgnature standard
gppearsin the discusson of XML security in Appendix D. Some products for enabling digitd signature
of Web content are listed in Appendix C.

4.5.3 Code Integrity

All gpplication code running on the Web server should interact with the underlying middieware or
operating system layer cryptographic system that performs digita sgnatures and encryption. To
implement digital Sgnatures on gpplication code, follow these geps.

1. Havethe application create a hash object by caling afunction that initiates the hashing agorithm
for agtream of data. This function will return a handle for the application to use in subsequent
cdls.

81
FOR INFORMATIONAL PURPOSES

Draft

2. Havethe application add data to the hash-object, and then cdl adigitd signature function in
middleware or the operating system to sgn the hash vaue.

3. After the middleware or operating system layer accepts the cal and sgns the vaue, then encrypt
it using the sgnature private key.

In addition to using hashing and sgning program code, the previoudy mentioned security mechanism
known as a sandbox can be implemented. It is a standard part of Javaand Perl, but it may be
implemented for other languages usng third-party sandboxing mechanisms. A sandbox is used to assign
alevd of permission (or privilege) a run time to the gpplication executable that will run in that sandbox.
The sandbox permission granted to an executable will depend on what operations the application is
expected to perform during its norma, correct operation. If the gpplication attemptsto run in an
unexpected way, the sandbox will generate an exception that will restrict the code and prevent it from
performing the illega operation or ng any resources outs de the sandbox.

4.5.3.1 Digital Signature of Mobile Code
4.5.3.1.1 Java Applets

Digitd sgnatures on Java gpplets are verified by the Java Plugin 1.3 in the browser (see

Java applets viathe plug-in's Cryptographic Service Provider (CSP). The CSP should be configured to
use the SHAIwithRSA digita signature option. This agorithm will be automaticaly registered with the
Java Cryptographic Architecture framework as part of the static initidizer of the PluginClassLoader.

If the applet is signed, and the permissions granted to it do not include the specia usePolicy permission,
the PluginClassLoader will extract the sgners (and their supporting certificate chains) from the applets
source code and attempt to verify them.

If the Java plug-in can verify the certificate chain dl the way up to itsroot CA certificate, it will aso
verify that the root CA certificate is contained in the database of trusted root CA certificates. If so, the
plug-inwill display the certificate chain of the authenticated Sgner and ask the user whether or not to
grant AllPermission to code signed by that principal. Java code that is assigned the AllPermission
permisson istreated in the same way as system codeis, meaning it has dl the privileges that system
code has. The user can then choose whether or not to grant AllPermission to code signed by that
principa and whether such permission should be granted to any code signed by that principa for dl
subsequent sessions or for the current sesson only.

4.6 ACCOUNTABILITY OF APPLICATION USERS

In addition to auditing at the operating system and DBMS levels, the Web application needs to log
security-relevant events and store that log data securely to prevent unauthorized tampering or disclosure
of the log data. This secure storage may be implemented by channdling the log data via a secure

82
FOR INFORMATIONAL PURPOSES

Draft

connection to an externd audit system, such as a centra audit collection server, audit middieware, or the
operating system audit trail.

Read-only mediafor storing of audit data can help ensure nontamperability of the audit trail, but the only
way to ensure nonbypassability of audit is by implementing audit data collection on a trusted system.
Otherwise, accountability can be subverted by tampering with the underlying system, below the
gpplication layer at which auditing takes place. For example, auditing can be subverted by embedding
code that captures audit records (data collecting trapdoors) or modifies or del etes the content audit log
records.

4.6.1 Application Integration with System Audit Log or Audit Middleware

Write the gpplication to log its own security-relevant events and errors. Also, structure this application
logging capability so that it can reformat and pipeits log records into the underlying operating system
audit trail, or into amiddleware audit collection system.

For example, Apache' s Logdj framework provides an extensible event logging service to applications
running on the Apache Web server. Logging and audit entries captured by Logdj may be routed to the
local operating system audit trail, or to audit middieware, usng Logdj’ s pluggable logging modules.
Appendix C lists some third-party audit middieware.

4.6.1.1 Minimum Requirements for Application-Level Audit

Whatever approach is used—integration with the underlying operating system’ s audit or with audit
middleware—auditing of gpplication security events must comply with &l DoD- defined requirements for
auditing in systems of the particular sengitivity level and classfication and misson criticdity a which the
gpplication will operate. These requirements include such capabilities as

Support for administrator configuration of audit parameters, including events to be audited,
information to be captured about those events, and setting of notifications and darms on an
event-by-event basis

Support for administrator configuration of fill thresholds and disposition of nearly full and full
audit records

Tools for viewing of audit records, audit reduction, and capturing and printing of audit reports
Support for adminigtrator configuration of gpplication behavior in case of audit failure

API or other hook between the audit mechanism and any intrusion detection or other security
monitoring System.

See Recommended Standard Application Security Requirements Table 4-6 for the required
operationd characteristics of gpplicationleve audit facilities. These requirements should be used as
criteriawhen evauaing third-party audit products.

83
FOR INFORMATIONAL PURPOSES

Draft

4.6.1.2 Application Eventsto Be Audited

See Recommended Standard Application Security Requirements, Table 4-6, for the specific types of
security-relevant application events that should be audited, as wdl as what information should be
captured about those events.

4.6.1.3 Application Logging if the Underlying Audit System Becomes Unavailable

The application’s logging capability must aso be able to continue operating—storing the log data locally,
with access control protections (and possibly in encrypted form)—in case of afalure of the externd audit
system. It may be desirable in some gpplications to have gpplication log data both stored locally (ina
secure way) and channded to an externd audit facility.

In addition, the gpplication’ s logging mechanism must alow the adminigtrator to configure amaximum fill
threshold. That pertains to the maximum number of log events, or number of bytes of data, that can be
stored by the application’s log before it generates an darm, triggers an orderly shutdown or takes other
actions. See Recommended Standard Application Security Requirements Table 4-6 for the required
operationd characteristics of application-level audit facilities and their response to adminigrator-
configured fill thresholds.

4.6.1.4 Protection of Application Log Data Before It Reaches External Audit System

If an externd audit system is used to store application-leve log data, the interface between the
gpplication’s own event log and the externd audit system must be secure, ether by using an encrypted
connection (channel) between the two, or by encrypting the log data before transferring them viaan
unencrypted channdl (socket connection) or API. In the case of a centra audit system or audit
middleware, the secure interface will idedly be provided as a sandard feature of that system and
middleware. If it is not, the gpplication will have to provide it in away that can be accommodated by the
externd system and middleware, and that does not compromise the security of the application’slog data
in trangt to that externa system and middleware.

4.6.2 Application Security Violation Notifications
4.6.2.1 Application I ntegration with Intrusion/Violation Detection

We gtrongly recommend using a Web gpplication server that is able to detect violations of security
policy, such as access control or authorization violations, and to raise a security exception if such a
violation is detected (with the ability to generate an darm to the administrator if such an exception is
rased, aswel as auditing of al such exceptions). Java J2EE, for example, includes a security manager
that can be used by the gpplication. The security manager performs al policy checking on security-
relevant events, detects any violations, and raises security exceptions accordingly.

84
FOR INFORMATIONAL PURPOSES

Draft

4.7 NONREPUDIATION BY APPLICATION USERS

Digitd sgnature is the mechanism that should be used in Web gpplications to ensure nonrepudiation by
users. Digitd sgnature mechanisms will be implemented the same way whether they are used for
integrity or nonrepudiation or both (only the certificate used will vary). Refer to Section 4.5.2 for
information on implementing digital Sgnature in Web applications.

85
FOR INFORMATIONAL PURPOSES

Draft

5.0 MAKING APPLICATIONSRESISTANT TO COMPROMISE AND
DENIAL OF SERVICE

5.1 AVOIDING BUFFER OVERFLOW

Buffer overflows result from programming errors and testing failures. They are common to dl operating
systems, dthough not to al programming languages. More than haf of the security advisories from
CERT (http://Mww.cert.org), including the August 2001 Code Red, originate from buffer overflow
vulnerabilities.

To cause a buffer overflow, an attacker sends a gtring of datathet is longer than the fixed size of the
memory buffer allocated to receive the data string. As aresult, the data string overflows the butffer, filling
up other areas of memory that have been dlocated for other purposes. The most common result of
buffer overflow isadenid of service.

In more sophigticated buffer overflow attacks, the attacker uses the opportunity created by the buffer
overflow to replace the saved return pointer on the stack containing the buffer with another pointer
vaue. Thereault istha instead of pointing to the origina program that sent the call containing the
overlong data string, the stack now points to (and causes to execute) a maicious program created by
the attacker. This madicious program will run with the same privileges as do the origind program, and it
may be able to add and delete data or to run, modify, or replace programs the attacker would
otherwise be unable to access. It is difficult to create, but if successful, this sophisticated attack can be
eadly distributed as a reusable script to other hackers.

Buffer overflows are dmogt exclusvely limited to C and C++ gpplications, due to the lack of input
vaidation in those languages. Using another programming language is an way to avoid buffer overflows.
Perl, for example, automaticaly resizes memory arrays and is thus immune to buffer overflows. Java
includes automatic bounds checking for buffers, and it does not alow pointer manipulation. Python is
another language that prevents buffer overflows, as are Ada and Pascal.

Even if you do not write asingleline of codein C or C++ libraries, it is extremdy likdly thet &t least
some of the software libraries, APIs, and third-party you use will be written in these languages. Thus,
amply not using these languages is not a 100% guarantee againgt buffer overflow. However, it will go a
long way toward minimizing the likelihood of buffer overflows. Input vaidation must do the rest.

If you do writein C or C++, the way to avoid buffer isto verify that the length of any input data string
does not exceed the defined bounds (length congtraints) for the field into which the string was input. If
possible, write the application to truncate input strings that exceed defined bounds; otherwise reject and
discard them. Under no circumstances dlow overlong strings to bleed into other areas. Thisis exactly
what causes buffer overflows.

Here are some generd guiddines for preventing buffer overflow in any language that does not do input
vaidation:

86
FOR INFORMATIONAL PURPOSES

Draft

Always program the results buffer to be larger than the source buffer.

Do not use any function that does not check array boundaries.

Always check bounds on the length of data before they are copied into program buffers.
Check bounds on al array and buffer accesses.

Make sure that excessively long data el ements are not passed into other libraries, because you
cannot trugt other programmers code not to induce interna buffer overflows even if your own
code avoids them.

Be aware of problematic functions and system cals. Use them safdy, (in ways that will not
subject them to buffer overflows, or use sefer dternatives.

If you do plan to write some or dl of your gpplication functiondity in C or C++, pleaseread, in
Appendix D, the specific discusson of C/C++ buffer overflow and its prevention.

5.2 AVOIDING CROSS-SITE SCRIPTING

If data from an untrusted user will be forwarded by the gpplication to a second user, make sure the data
does not contain malicious code and does not point to malicious code that could be executed by the
second user’ s browser. Also make sure that data originating on the server and output to users have not
been corrupted with embedded malicious code or pointers to malicious scripts on other sites. Web
goplications written in HTML or XML are particularly vulnerable to this kind of attack, which goes by
names such as* cross-ste scripting,” “maicious HTML tags,” and “madicious content.” Cross-Ste
scripting can be used on a hogtile server to link usersto your server by providing those users with alink
that contains a corrupted form. It can aso be used to fool your own usersinto thinking that a hogtile
script originated from your server and thus can be trusted.

Web applications that permit usersto include HTML in their input that may later be posted to other
users should include controls that protect input from interception and tampering by hackers. Examples
of these Web applications are e-mail clients that alow HTML-formatted email messages, bulletin
boards, and guest book applications. Hackers might use the HTML tags to insert scripts, Java
references to hogtile applets, DHTML tags, early document endings (via</ HTML>), irrationd font size
requests, and o forth, in the input before it reaches its destination. The unsuspecting recipient’s
browser then executes the mdicious embedded code or links to the mdicious location with potentidly
damaging results to the unsuspecting user’ s system. Damage includes

Exposure of SSL-encrypted connections
Accessto restricted Web sites via the attacked browser

Violation of domain security policies

87
FOR INFORMATIONAL PURPOSES

Draft

Rendering Web pages unreadable or difficult to use (defacement by adding annoying banners
and offensve materid)

Violations of privacy (e.g., by inserting a Web routine that monitors exactly who accessesa
certain page; embedding maicious FORM tags in data input forms, then modifying the form to
trick the user into reveding sendtive information)

Causing denid- of-service attacks (e.g., by continuoudy creating new browser windows)
Targeting specific vulnerabilities in scripting languages
Causng buffer overflows

Applications should not accept any input, including form data, without firgt taking these actions:

Validating data when received to ensure that only safe data are accepted and that al other data
arergected or

Filtering data when received, to remove potentialy dangerous characters from the text, and
accepting the rest or

Encoding potentidly dangerous characters to prevent them from causing trouble; encoding may
be performed when the data are received (if the gpplication will not be doing any processing of
the data), or just before they are forwarded to another user (after the application have
processed the data).

Findly, if an e-mail client isused in the application (client or server), use atext-only e-mail dient that
does not alow embedded HTML in message bodies.

Be aware that buffer overflow (e.g., get s() problems, stack overflows) isan equa opportunity
problem for operating systems. Buffer overflow is as likely to happen on Windows and MacOS as on
UNIX and Linux.

5.3 INPUT VALIDATION

The countermeasure that will go the longest way toward achieving the resistance of Web gpplicationsto
compromise and denia of service isvdidation of data input to the Web server application by users or
external processes.

The most widdy reported Web gpplication vulnerabilities-buffer overflow, cross-ste scripting, null byte
attacks, SQL injection attacks, and HT TP header manipulation-are al caused by Web server
gpplications that accept invaid data from Web clients. All can be prevented by thorough, correct input
vaidation of data by the server.

88
FOR INFORMATIONAL PURPOSES

Draft

All arguments and other input data strings submitted by users, externa processes, and in some cases by
internal untrusted processes should be carefully reviewed by the Web server gpplication to verify that
the data conform to the formatting and content characteristics defined as dlowable for those data. The
server gpplication should never trust any input from clients and little if any from other servers, and it
should vdidate dl vauesthat originate externdly to the goplication program itsdlf, including arguments,
environment variables, and parameters. The server should not trust any external entity that has not
proved its trustworthiness. Browsers are vulnerable and unable to prove their trustworthiness. Other
sarvers trustworthiness must be proven on a server-by-server basis.

The Web server gpplication must aso distrust vaidations done by the browser. At best, browser
vaidation of data should be seen as afirg-line filter that might prevent some invadid data from being sent
to the server. Browser vaidation cannot be trusted not because the browser’ s vaidation routines are
faulty, but because the browser itsdf, and the data stream sent by it, are both easily compromised.
Client-9de vdidation can be bypassed or interfered with by amalicious user or hacker (unlessthe client
gpplication runs on a trusted operating system with access controls that protect the client executable and
datafrom tampering). Thus, even if the browser gives the user input a clean hill of hedth, there remains
ared risk that the data will be tampered with between the time they pass the browser’ s vaidation and
they reach the server. For this reason, input vaidation should be done by atrusted processin the Web
server application, even if the data have aready been vaidated by the browser.

If the system in which the application will be deployed provides a common set security servicesto dl
gpplications, there may dready exist a common component whose function isto filter dl input and
output. If S0, write the gpplication to invoke this common filtering component, instead of embedding a
custom-devel oped filtering function into the application. If the filtering component does not performadl
of the input validation checks you fed are necessary, you may need to augment it with your own input
vaidation routinesin the gpplication itsdf. Similarly, if there is no common input vaidation service
available to the gpplication, you will have to develop your own input vaidation routines.

NOTE: For additional detailed information and examples on input validation,
refer to the chapter on Input Validation in Secure Programming for Linux and UNIX
HOWTO (see Appendix C).

5.3.1 Designing Applicationsto Make Input Validation Easier
It may be possible to implement some input validations using third-party vaidation routines. Appendix C
lists some available third-party input vaidation software. In most cases, however, you will need to write

your own scripts and routines for validating user input.

Following the guidelines below when writing the application will make it easer to input vaidation
checking in your application.

89
FOR INFORMATIONAL PURPOSES

Draft

5.3.1.1 Clearly Define Acceptable I nput Characteristics

Unambiguoudy define the acceptable type, length, and format of every data string expected as input to
the application, for example, of every field in every HTML form. Also unambiguoudy specify dl vaid
values (or ranges or vaues) for every parameter expected as input to the application. These definitions
will serve asthe rules to be enforced by input vaidation checking, whether it is performed by an externd
vaidation service invoked by the application or by validation routines within the application itsdlf.

5.3.1.2 Use Only Functions That Perform Bounds Checking
Do not use any function in the gpplication that copies input data without first checking buffer lengths.
5.3.1.3 Pass Argumentsin Environment Parameters

Do not dlow the application to trust operating system environment variables. Insteed, pass every
argument to the gpplication in an environment parameter.

5.3.1.4 Suspend Processing Until Input Is Validated

Write the gpplication to suspend processing of any transaction in which input (including remote IP
addresses and port numbers) is received over the network until that input has been validated by or on
behdf of the gpplication.

5.3.1.5 Do Not I nvoke Untrusted Programs from Trusted Programs

Do not write trusted programs in the gpplication to invoke untrusted programs. Write the trusted
programsto verify the trustworthiness of dl programs they do invoke, by requiring the invoked program
code to be digitdly sgned or hashed. Write aroutine that invokes a PKI function to vadidate the
sgnature and hash, and only alow the trusted gpplication to invoke the program if its Sgnature and hash
can be vaidated.

5.3.1.6 Use Only I ndependently Certified Third-Party Components

Write dl trusted programs to distrust third-party—COTS or public domain (open source, shareware,
freeware)—software components whose trustworthiness has not been independently verified through
NIAP cetification, NSA Trusted Product Evduation Program (TPEP) evauation, or other means.
Independent verification of third-party componentsis required regardless of whether athird- party
components code has been signed and hashed. See Appendix C for more information on independent
verifications and security criteriato use when evauating third-party components.

5.3.1.7 Validate Data Before Copying to a Database

If the gpplication is afrontend to a backend database, the gpplication should validate dl user input
before copying the data into the database. Do not rely on the database to validate the user input. Refer
to the discussion of SQL injection in Section 5.4.1.2.

90
FOR INFORMATIONAL PURPOSES

Draft

5.3.1.8 Write Scripts to Check All Arguments
Write not only software routines, but dso dl CGI and shell scripts, to check dl of their arguments.
5.3.1.9 Protect Cookies at Rest and in Transit

Although cookies are the preferred method to maintain state when using the stateless HT TP protocol
and to store user preferences and other data, cookies should not be used to store senditive data such as
session tokens and array's used to make authorization decisions. Both persistent and nonpersistent
cookies, whether secure or insecure, can be modified by a maicious user who gains access to the
browser, then transmitted to the server in a URL request. Even nonpersistent cookies, though less
vulnerable to tampering, can be modified usng atool such as Winhex.

SSL/TLS protects cookiesin trandt, but it does not protect cookies stored in the browser. Instead of
storing user propertiesin a cookie in the browser, store them in the user’ s session token in server-side
cache, directory, or database. When the server application needs to check a user property, it can then
reference the usernamein its own session table, which will point to the user’s sesson token (stored in
the server cache and database) containing the needed data and variables.

To prevent acceptance of tampered cookies, encrypt each cookie with a symmetric encryption
agorithm or hash the cookie, and have the application compare hashes when the cookie is returned.

5.3.1.10 Do Not Use Hidden Fields for User I nput

When auser makes asdection in an HTML form, by indicating a sdection in a pull-down menu or
checking abox, or by typing in text, the sdlection is usualy stored asan HTML form field value and sent
to the application in an HTTP GET or POST request. HTML can aso store field vaues as hidden
fidlds. Hidden fidlds are not echoed to the screen by the browser but are collected as parameters and
submitted in the background when the form is submitted to the server. Hidden HTML form fiddsare a
convenient way for developers to store data in the browser and to convey data between pagesin
wizard-type applications. However, the same vulnerabilities that apply to other HTML form fieldsdso
apply to hidden fidds.

Form fields, whether selected, typed in, or hidden, can dl be manipulated by the user to submit
whatever vaues he or she chooses by saving the HTML form page, using the browser’ s view source
option, saving or cutting and pasting the source into atext editor file, and then modifying it and rloading
the modified page into the browser.

Congder an gpplication that uses a smple form to enable user log-in. In an attempt to prevent possible
buffer overflows caused by users entering overlong usernames and passwords, the developer may set
the form fidd vdue max| engt h=x for the username and password fidds, (where x istheinteger
defining the maximum number of characters dlowed in the fidld. This approach to preventing buffer
overflow isinherently flawed, however, because the hacker can smply save the HTML source of the

91
FOR INFORMATIONAL PURPOSES

Draft

page, remove the maxlength tag, reload the page in his browser, and then enter an extremdy long vaue
in the field to generate a buffer overflow. Other HTML form fields that hackers often target are

Disabled: often removed by the hacker to enable and otherwise disabled function or vaue
Read only: often removed to enable the hacker to write to an otherwise protected field
Vdue often changed to a different vaue than the one set by the devel oper

Now imagine that the application shown, in which the HTML form is used to enable user log-in,
includes a hidden HTML tag behind the login form field, to associate additiond parameters that will
ingruct the server application in how to interpret the user-supplied datain that form, such asthis:

<i nput nanme="adm naccess" type="hi dden" val ue="N'>

ThisHTML tag indicates that the log-in data provided by the user should cause him to belogged in asa
norma user, not as the adminigtrator (i.e., he should not be given adminaccess). By tampering with the
hidden field, changing the value N to Y, the hacker can trick the gpplication into logging him in as the
adminigtretor.

To prevent HTML form field manipulation, instead of using hidden form fields to embed various
parameters about the norma form field data, as with cookies, embed these parametersin the user’s
session token and store that token in a server-side cache, directory, or database. When the application
needs to check the parameters associated with that user’ s data entries in the form, it will reference the
user’s usernamein its sesson table, which will point to the sesson token, containing the user’ s data and
variables, in the server cache and database.

5.3.2 Rgection and Sanitization of Bad Input

Rejection of bad input data presumes that the application can recognize specific erroneous and
madiciousinputs. Infact, it is very difficult for an gpplication to maintain a complete, up-to-date database
of malicious code sgnatures. If possible, the application should be implemented to invoke an externd
virus scanner and maicious code detector as part of its input validation process, though even the
sgnature databases of the best scanners will not be up to date at al times.

Attempting to make bad input data harmless through sanitization should be seen as the second, not the
fird, line of defense. If input appears suspicious but cannot be authoritatively determined to be bad,
rules by which the suspicious portions of the data are removed can be invoked. Owing to
canonicalization, however, effective sanitization is extremely hard to implement. That iswhy sanitization
should be used as a backup for rgection, and not vice versa.

5.3.3 Natification of Correct Input

It is reassuring to users when the gpplication returns a notification message when the user’ sinput has
been accepted by the gpplication. Thisis true whether the application itself, or abackend server, is

92
FOR INFORMATIONAL PURPOSES

Draft

responsible for the find validation and dispogition (acceptance, rgjection) of the input. Therefore, write
the gpplication so that users are dways notified not only when input is rgected, but when input is
accepted.

5.3.4 Validationsto Perform
The following sections describe the types of input vaidations that Web applications should perform.
5.3.4.1 Type Checks

Check to ensure that the input is, in fact, avdid data string, not any other type of object. Thisincludes
verifying that the input string contains no inserted executable content or active content, such as Trojan
horses, malicious code, metacode, metadata, or metacharacters, HTML, XML, JavaScript, shell script,
streaming media (or any other type of active or executable content). Note that executables and active
content are often added to valid arguments to cause buffer overflows. Smilarly, perform type checking
on URLs and pathnames to verify that they are in fact URL and pathnames and do not contain metadata
or pointers to malicious code.

If possible, sanitize any input strings to strip them of metadata or other suspicious tags, otherwise
discard the form that contains the suspiciousinput. Under no circumstances should the application
execute active content or metacode embedded in datainput strings.

5.3.4.2 Format and Syntax Checks

Verify that the data string conforms with defined formatting and syntax requirements for that type of

input, and perform canonicalization checks as appropriate. See Section 5.4.3.1.3. For example, the
only acceptable format for aform field intended to collect Socid Security Numbersis nine numeric

characters. Rgect and discard dl incorrectly formatted or syntax-violaing data

5.3.4.3 Parameter and Character Validity Checks

Verify that any parameters or other characters entered (including format parameters for routines that
have formatting capabilities; see Section 5.3.4.5) have recognized, valid vaues. Rgect and discard any
parameters that have invalid vaues. Filter dl arguments, and select only the characters thet are
appropriate for the function being performed. If an argument is submitted as the result of a user
sdection from a pull-down menu of check box, make sure the vaue provided by the user isin fact one
of the legd vaues.

It cannot be stated too often that Web applications should not be written to assume that data sent
between browser and server is trustworthy and has not been changed during transmission, unless the
data were protected from disclosure and tampering by encryption (SSL/TLS), and possibly dso a
digitd Sgnature or hash.

93
FOR INFORMATIONAL PURPOSES

Draft

5.3.4.3.1 Handling Special Characters

Asshown in Table 5-3.1, the following characters act as pecid charactersin HTML paragraphs and
XML blocks. They should be checked for in user input from browsers and in server output to
browsers.

Table 5-1: Special Charactersin HTML and Their Purpose

< Introduces a tag

& Introduces a character entity or separates CGI
parameters

> Is treated as special by some browsers that assume

it was a typo and that the author really meant to enter
<

When enclosing an attribute value, marks the
beginning and end of the attribute value

When enclosing an attribute value, marks the
beginning and end of the attribute value (see note that

follows)
/sp /tab /nl Indicates the end of a URL
non- ASCI | characters Shows what is not allowed in URLS; all characters

greater than 128 in ISO-8859-1 encoding are non-
ASCII, and are not allowed in URLs

% To be filtered out if used in code that contains
parameters encoded with HTTP escape sequences
that will be decoded on the server; for example, %
should be filtered out if “%68%65%6C%6C%6F”
becomes “hello” when displayed on the Web page
() {13} /Inl To be filtered out if enclosed by <SCRIPT>
</SCRIPT> if text could possibly be inserted directly
into the preexisting script tag

! To be filtered out of server-side scripts that convert
exclamation marks into double quotes in output

NOTE: Although the XML specification allows use of single quotes (' '), some
XML parsers do not handle them correctly. To be safe, use only double quotes
("") in XML. Also note that attribute values not enclosed in quotes turn white
gpace characters, such as/ sp (space) and/ t ab into special characters. These
are not legal in XML, where they turn other charactersinto special characters as
well. Do not use unquoted attributes in XML if they will include dynamically
generated values.

5.3.4.3.1.1 FHltering Specid Characters

One gpproach to handling specia charactersisto smply filter them as soon asthey are input or before
they are output. To filter specia characters during input vaidation, Smply omit charactersto befiltered
fromtheligt of vaid charactersto be dlowed. For example, the following filter, written in Perl, will
accept only one specid character, / sp:

94
FOR INFORMATIONAL PURPOSES

Draft

Accept only legal characters:
$summary =~ tr/A-Za-z0-9\ \.\://dc;

To filter the minimum number of characters, it may be preferable to use a subroutine that removes only
those characters (rather than one that checks for only vaid characters). Hereisan example againin
Perl:

sub renmpve_special _chars {

| ocal ($s) = @;

$s =~ s/[\<A\>\"\"\VA;\(\)\& +]//g;
return $s;

}

Sanpl e use:
$data = &renpve_special _chars($dat a);

5.3.4.3.1.2 Encoding Specia Characters

An dterndive to removing the specia charactersisto encode them in away that removes their specid
meaning. One advantage of encoding (commonly caled HTML encoding) over filtering isthat it avoids
dataloss, which isarisk with filtering, and still alows specia characters to be displayed on the Web
page. The HTML, XML, and SGML specifications dl explain the correct encoding of specid
characters, and specify the encoding character sets (char sets) that may be used. For example, the
HTML specification ligts dl mnemonic names, decima numbers, or hexadecimd to be used in HTML
character encoding. RFC 2279 references severd possible text encoding charsets.

Implementers of UTF-8 need to consider the security aspects of how they handleillega UTF-8
sequences. It is concelvable that in some circumstances an attacker would be able to exploit an
incautious UTF-8 parser by sending it an octet sequence that is not permitted by the UTF-8 syntax. A
particularly subtle form of this attack could be carried out againgt a parser that performs security-critica
vaidity checks againgt the UTF-8 encoded form of itsinput but that interprets certain illegd octet
sequences as characters. For example, a parser might prohibit the NUL character when encoded as the
sngle-octet sequence 00 but dlow theillega two-octet sequence CO 80 and interpret it asa NUL
character. Another example might be a parser that prohibits the octet sequence 2F 2E 2E 2F
("/..1") yepemitstheillegd octet sequence2F CO AE 2E 2F.

To avoid potential problems when the encoded characters are displayed by the browser, the encoding
character set (charset) used internaly by the server should match the charset used to encode output to
the browser. If the server’ sinternad charset is not 1SO-8859-1, make sure that the dternative
encodings (e.g., UTF-7, UTF-8) for specid characters do not inadvertently dip into output sent to the
browser.

The best way to prevent incompatibility between the server’ sinterna encoding charset and its output
charset isto firgt trandate the charactersinternally to 1SO 10646 (which uses the same character values
as Unicode), then use ether numeric (decimd or hexidecimd) or character entity (mnemonic) references
to represent the characters in output.

95
FOR INFORMATIONAL PURPOSES

Draft

NOTE: Hexadecimal encoding is not supported in SGML (1SO 8879); you must
use decimal encoding instead.

Regardless of which charset you choose for the gpplication, dways specify the encoding charset that
should be used by users when they return data to the Web application, by specifying this charset inthe
HTML using the charset parameter. If the encoding charset is not specified, the user may use an
encoding scheme not expected by the gpplication to include encoded specia characters or metadata
that point to malicious content, or to disguise malicious code before insarting it into input data. In
addition, unless older HTML 1.0 browsers must be supported or the programming library does not
alow it, set character encoding as part of the HT TP protocol output, which would enable the server to
send the desired charset vaue as part of the HT TP protocol.

5.3.4.3.1.3 The Canonicdlization Problem

Canonicdization is the method by which systems convert data from one form to another. The canonica
form of the datais the smplest, most standard form of that data. Canonicdization meansthe converson
of something from amore complex representation to its smplest form. Web gpplications perform
canonicalization when doing URL encoding or | P address trandation, among other activities.

The canonicalization problem arises when security decisions are based on canonica forms of data but
the application is unable to accurately map, encode, and decode the canonicaized data.

5.3.4.3.2 Handling Metacharacters and Metacode

Metacharacters affect the behavior of programming language commands, operating system commands,
individua program procedures, and database queries. They may be nonprintable or printable. None of
the following characters, as shown in Table 5-3.2 should be accepted as legitimate input to Web
goplications.

Table5-2: Metacharactersand Thar Actions

; Causes additional command execution
| Causes command execution
! Calls to a command, which is then executed

& Causes command-execution

x20 White space, can be used to fake URLs and other names
x00 Null bytes, to truncate strings and filenames

x04 EOT, for inserting an “end of file” indicator

x0a Newline, to indicate additional command to be executed
x0d Newline, to indicate additional command to be executed
x1b Escape

x08 Backspace

x7f Delete

Often combined with database queries
- Combined with database queries and creation of negative
numbers

96
FOR INFORMATIONAL PURPOSES

Draft

* 0% Combined with database queries

) Causes command execution

[\ Used to fake pathnames and queries and to insert scripting
language-related tags in documents on Web servers

> Causes file operation

Programming/scripting language related
Programming/scripting language related
Programming/scripting language related

: Programming/scripting language related

() {} I[1 Programming/scripting language and regex related

@69'\)/\

5.3.4.3.2.1 Shdl Metacharacters

Applications that will run on UNIX systems should particularly avoid including UNIX command shell
(e.g., /bin/sh) specid characters, which are interpreted by the shell as metacharacters unless preceded
by an escap” character. These specia shell characters areaasfollows:

& \ I

* ? ~ < > I\ (

) [] . = { }
$! - -- # [n] [r]
[t] [v] [f] [sp] [nil]

In shell scripts, the default separators for parameters{ t | (tab), [sp] (space), and [n]

(newine)—should be changed to different values, viathe internd field separator (IFS) environment
variable. In addition, if the source of any shell script is untrustworthy, the IFS environment variable
should be discarded or reset during environment variable processing. Note that in both in UNIX shell
and Perl, the back tick (*) dso cdlsacommand shell.

Shell metacharacters are pervasive because severd important library calsin C and C++ are
implemented by calling the UNIX command shdll (and are thus affected by shell metacharacters). Avoid
the following cals when writing code that spawns a process, useexecve() instead:

popen()

system()
execl p()
execvp()

5.3.4.3.2.2 SOL Metacharacters

QL dso includes metacharacters. Avoid including metacharacters in any program that callsto SQL.
When formulating a SQL command, alow only avery limited pattern (format) for input, and dlow only
data that match this gtrictly defined pattern to enter the program. Limit the input pattern for SQL
commands to one of the following:

~[0-9]1%

97
FOR INFORMATIONAL PURPOSES

Draft

or
AL 0- 9A- Za- 2] *$

If the gpplication must handle data that may include SQL metacharacters, the data should be encoded
before they are stored. For example, the application could encode the data—including ampersands (&)—
into HTML, with dl user inputs (including numeric inputs) enclosed by quotation marks (" "). Refer to
Section 5.3.4.3.1, Handling Specid Characters.

5.3.4.3.2.3 FHle Disclosure Vulnerahilities and Path Traversd Attacks

If the Web application uses the Web server file sysem to temporarily or permanently save information

such asimagefiles, satic HTML files, or CGI scripts, be aware that the WMW-ROOT directory isthe
virtua root directory within many Web servers. Thisdirectory is accessble by HTTP clients. The Web
applications may store datawithin or outside, or both of WMAV-ROOT in designated locations.

If the application does not properly check and handle pathname metacharacterssuch as. . / |, the
application may be vulnerable to a path transversal attack in which the attacker constructs a malicious
request to return data about physicd filelocations, such aset ¢/ passwd. Attackers may create
gpecidly crafted URL s to cause path traversd attacks in conjunction with other attacks, such as SQL
injection attacks. Path traversal attacks may be used to traverse to system directories containing binary
executables, thus enabling the attacker to execute system commands outside of the designated
pathnames.

Preventing path traversals and path disclosures can be difficult in large distributed Web systems
conssting of severd gpplications. The architecture of such distributed systems should include a centra
point a which al requests are recelved and from which al requests leave, so that asingle common
Security component can be used to detect and prevent path traversals and disclosures in those requests.

5.3.4.3.3 Null Byte Checks

Even if you write the Web gpplication in alanguage other than C or C++, a some point in the
gpplication operation you will likely have the program pass data for further processing to an underlying
low-leve function (e.g., alibrary routine) in C or C++. For this reason, you need to be awvare that in C
and C++ the null byte (\ 0) isthe terminator for a string.

Applications that do not perform adequate input vaidation can be fooled into prematurdly terminating a
string (with unpredictable results) by a user’ sinsartion of null bytesinto critica parameters, for example,
by URL encoding the null bytes (i.e, 0©0) inan HTTP QUERY _STRING).

Perl isvery susceptible to null byte attacks when executing system cdlls, suchasopen and st at . So
are the File, RandomAccessFile, and smilar dlassesin Java. PHP is aso susceptible if not configured
to avoid such attacks.

If dl requests comeinto and leave from a central location (e.g., Web portdl), a single component can be
used to detect and prevent null byte attacks.

98
FOR INFORMATIONAL PURPOSES

Draft

5.3.4.4 Divide-by-Zero Checks

Check the value of any numeric argument submitted to a calculation to verify that the argument cannot
possibly cause the caculation divide by O (which canresult in afatd error). Write dl cdculaions
performed by the gpplication to specify their variables in away that makes division by zero impossible.
For example, to caculate a divided by b, do not write (or accept in third-party code):

alb

because b might = 0, which would result in an attempt to divide a by 0. Instead, write (or modify the
caculdion to reed) this:

\ | F(b<>0, a/ b)

That ensures the caculaion will be performed if and only if b islessthan or greater than O, but not if b
equas 0, thus diminating the potentid divide-by-zero problem.

5.3.4.5 Check for User Input to Formatting Routines

The application should not accept user input as parameters to formatting routines. This is because there
are many ways a hacker can exploit a user-controlled formet string, including

Submitting along formaiting string to create a buffer overflow.

Using conversion specifications that include unpassed parameters to enable insartion of
unexpected data instead of values intended for formatting or printing, or to enable the hacker to
overwrite near-arbitrary locations by specifying an dleged parameter that was not actudly
passed. In many cases, the results of such operations are sent back to the user, making thiskind
of attack an attractive way to revea interna information about the stack or to circumvent stack
protection systems such as StackGuard (see Appendix C).

Cregtion of formats that produce unanticipated results, for example, by prepending or
gppending awkward datato avalue.

Routines and operations that have formatting capabilities include the following C/C++ routines:
sysl og() (and other routines whose name contains log)
setproctitle

printf(),sprintf(),snprintf(),fprintf() (andothersthepri ntf
family)

functions whose names begin with err- or warn-.

99
FOR INFORMATIONAL PURPOSES

Draft

In Python, the operation %is a formatting operation. Also be aware of any programs or libraries that
define formatting functions by calling built-in routines to do additiona processing, for example, glib's
g_snprintf().Anexanpleof an condruct, in C, tha would be vulnerable to aformeatting string
attack isthis.

printf(string fromuntrusted user);

Thefollowing C congtruct will achieve the same functiona result, but without the vulnerablity:
printf("%", string fromuntrusted user);

The following guiddines will help you avoid formatting string vulnerabilities
To implement smple formatting stringsin C, use acongant sringor f put s() .

Filter al user datausing afilter that ligts the valid characters for the particular format string being
used.

Use acompiler that issues warning messages when it detects insecure format string usages (gcc
compilersissue such warnings).

Limit any formeatting string thet includes a function call to implement alookup for
internationdization (e.g., get t ext in C) to only vaues controlled by the program.

5.3.4.6 Check for Session Token to Prevent URL Manipulation

When auser clicksalink on an HTML page, the sdlection is trandated by the browser into an HTTP
URL request, which is then sent to the Web server gpplication viaHTTP GET or POST. Aswith
HTML forms, URL sdlections by users can be intercepted and manipulated by hackers, who change
parameter valuesin the URL by to congtruct request strings to perform other functions, such as
hijacking an e-banking transaction request and using it to transfer unauthorized purposes.

When a parameters needs to be sent from browser to server, it should be accompanied by avaid
session token. The gpplication should validate the session token to ensure that it isindeed the vaid
token associated with the requested username or account. The gpplication should rgect dl parameters
for which the session token cannot be vaidated as coming from an authentic user who is authorized to
act on the specific account indicated in the URL.

5.3.4.7HTTP Header Checks

HTTP headers are prepended to HT TP requests and responses to pass control information between the
browser and the Web server. Each HTTP header normally consists of asingle line of ASCII code
induding aname and avaue. Most Web gpplications ignore HT TP headers.

However, you may need to have your gpplication ingpect incoming HT TP headers-in which case, the
often-stated truism stands true: HT TP headers that originate from browsers should not be trusted; such

100
FOR INFORMATIONAL PURPOSES

Draft

headers may be intercepted in trangt from browser to server by a hacker and modified. Therefore,
never use a header that originates from abrowser (e.g., areferrer header) asthe basis for making a
Security decison.

If heeders must be relied on by the server gpplication, write it to trust only headers thet originate from
other servers, and implement additiona security measures to protect the headers to be relied on from
tampering. For example, if a header originates from a server in a cookie, encrypt, Sgn, and hash the
cookie before sending it, and do the gppropriate validations on the header it contains when receiving it.

Browsers themsalves do not alow header modification. However, hackers can easily write their own

amadl programs (aslittle as 15 lines of Perl) to perform the modifying HT TP request, or they may use

one of saverd fredy available proxies that enable easy modification of HT TP headers (and of al data
sent from the browser). Two common types of HT TP header manipulation attacks are described

baow.

Example of referrer header tampering: The referrer header is sent by most browsers and
usualy contains the URL of the Web page from which the HT TP request was sent. Some Web
server gpplications are written to check this header to verify that the request originated from a
Web page on that Web server, in the erroneous belief that if the HT TP request can be proven
to originate from a page on the Web sarver itsdf, it cannot possibly have originated from a copy
of the page downloaded, saved, and modified, and posted by the hacker on the hacker’s own
server. This verification check is pointless, however. A hacker resourceful enough to download
and modify the Web page itsdf will be resourceful enough to modify HTTP referrer header to
make it appear asif modified page were sent from the same Web server from which the origind
page was downloaded by the hacker.

Example of Accept-Language Header Tampering: The Accept-Language header indicates
the preferred human languages of the user. A Web applicationthat performs internationdization
may read the language |abel in the HTTP header and passit to a database as a pointer to look
up atext in the preferred language. If the content of the header is sent verbatim to the database,
an attacker may be able to embed SQL commandsin that (an attack known as SQL injection;
see Section 5.4.1.2). Similarly, if the header content is used to build the name of afile from
which to look up the correct language text, the hacker may useit to launch a path traversa
attack.

5.3.5 Virus Scanning

The best way to handle virus scanning of HTTP, SMTP, and FTP content is not from within the server
gpplication (e.g., through a cdl to avirus scanner), but by deploying a dedicated virus scanning system
to scan dl data before they are even alowed to reach the server application. For example, avirus
scanning gateway, such as Trend Micro's ViruswWall (see Appendix C) could be in the network DMZ
with the firewal. The reason that virus scanning should not be implemented by (or from within) the
goplication isthat virus scanning is a very high-overhead process that uses significant CPU resources.

101
FOR INFORMATIONAL PURPOSES

Draft

Thus, it should not even be implemented on the Web server platform with the application but should, as
indicated, be relegated to its own dedicated platform.

54 INTEGRITY AND INPUT VALIDATION IN DATABASE APPLICATIONS

For best performance, define and enable integrity constraints in the backend database used by the Web
application, and develop the application to rely on those congtraints rather than on SQL statements to
enforce the database’ s business rules.,

That sad, in some cases, you might want to enforce business rules through both the gpplication and the
integrity congraints. A first level of enforcement by the gpplication may more quickly feed back to the
user than with use of an integrity congraint done,

For example, consider an gpplication that is designed to accept 25 value from auser, and to use those
vaues to congtruct and submit an SQL INSERT statement to the database. The database' s integrity
congraints can be enforced only after adl 25 values have been entered by the user and the gpplication
has submitted the SQL INSERT statement containing those values. If any of the vaues violates a
business rule, the user will not be notified until he has finished submitting al 25 values and the SQL
statement has been received and vaidated by the database.

By contragt, if the gpplication itsdf performed afird-line vdidation of each value asthe user entered it,
and returned an error message immediately if any vaue was found to bein violaion of busnessrules,
the user could correct the value and resubmit it immediately, without having to wait until he had entered
al 25 vaues and the gpplication had submitted them in a SQL statement. This makes the processing of
database requests much more efficient and aso prescreens values before they reach the database, s0
that the database’ sintegrity condraints are used for exception handling of only those vaues that may
have got past the gpplication’sintegrity checks.

5.4.1.1 Reparsing Requests and Data for Backend Databases

The gpplication that transforms HTML formsinto SQL requests must keep the datainput in those
HTML forms secure and correct during the conversion process, and during the transmisson to the
backend database. Most mgor database management systems provide software packages, libraries,
and APIs that enable Web applications to trandate HTML forms requests into SQL queries. For
example, Oracle provides Javaand PL/SQL Web interface solutions.

5.4.1.2 Avoiding Direct SQL Injection

Direct SQL injection is an attack that enables mdicious users to make direct SQL cals to a backend
database by manipulating—cregting or atering—SQL commands transmitted in the browser’ sHTTP
requests to the server. SQL injection is used to gain access to data for which the atacker is not
authorized. This attack succeeds on systems in which input validation routines do not exist or are poorly
designed.

102
FOR INFORMATIONAL PURPOSES

Draft

Too many Web applications assume that an SQL query isatrusted command. Thus, SQL queries are
able to circumvent Web server access controls and bypass standard authentication and authorization
checks. In some ingtances, attackers can use SQL queries to gain access to operating system
commands. Direct SQL injection attacks are also used by hackersto

Change SQL vaues

Concatenate SQL statements

Add function calls and stored-procedures to a statement
Typecast and concatenate retrieved data.

To prevent SQL injection attacks, take these measures:

Vdidate dl user input to SQL queries, and accept only expected data types.

Validate and sanitize every user variable passed to the database.

Quote user input passed on to the database.

Use user-supplied data to build SQL read-only queries only, not to update databases.
Never accept direct SQL queries (or query fragments) asinput data.

Filter out any specid characters from SQL satements, including + ' = .

o g bk~ wbdrE

5.4.1.2.1.1 Example of aDirect SOL Injection Attack

A Web application includes functiondity that enables users to change their passwords. To do so, the
server presents an HTML form to the user with four blank fieds:

User nane:

A d password:

New passwor d:
Confirm new password:

When the user enters the requested information in the HTML form fields, the browser trandates the
supplied datainto an HT TP request, which it sends to the server gpplication:

http://ww. server. m |/ changepwd?pwd=0 dP@ swD&newpwd
=5QL! nj ect &newconfirmpwd=5Ql! nj ect &ui d=t est user

The server gpplication extracts the four parameters from the HT TP request:

Pwd=0O dP@swD
Newpwd=5Q1! nj ect
Newconf i r mpwd=5QL! nj ect
Ui d=t est user

103
FOR INFORMATIONAL PURPOSES

Draft

It then checks to make sure that Newpwd matches Newconfirmpwd. After verifying thet the two
match, the application discards Newconfirmpwd and builds an SQL query, which it sendsto the
password database, to validate the old password and then overwrite it with the new password:

UPDATE usertabl e SET pwd="$l NPUT[pwd] ' WHERE
ui d=" $I NPUT[ui d] ';

A hacker who knows how this process works will aso know he can insert an additiond database
function within the valid SQL request. He could modify the HTTP request generated by the browser
(before that request is transmitted to the server), to include an additional function thet replacesthe
password of al accounts named admin with his own password. Here is an example:

http://ww. server. m |/ changepwd?pwd=0 dP@ swD&newpwd
=5QL! nj ect &newconfi r npwd=5QL! nj ect =t est user
" +or +ui d+l i ke' 925adm n9%R5" ; - - %90

Thismodified HTTP request is trandated by the server into an SQL query that ingtructs the password
database to reset the administrator password to the hacker’ s password. The result is that the hacker
gains unlimited access to the Web server, whereas the | egitimate administrators are locked out.

5.4.2 Validate Originators of Dataand HTML

Usudly Web gpplications implement only one-way authentication (via SSL/TLS) to assure the client that
it isindeed connected to the expected server. However, SSL does support two-way authentication,
whereby client and server mutually authenticate one another, so the server isaso assured that it is
connected to the expected, known client. Two-way authentication using SSL should be used to prevent
unauthorized modifications of data on the Web server by unauthorized clients.

For example, abrowser connects to the Web application server (e.g., J2EE) via SSL to submit aWeb
form (HTML, JavaScript, etc.) containing arequest for data. SSL. secures dl datain transit between
browser and server, whereas the server itself must protect the data it receives from the browser, using
al of its standard access controls and other security mechanisms.

The form data could then be trandated by a server process into an XML-based query and passed to a
data access sarvice running in the Web gpplication server. The data access service would then trandate
the XML query into the appropriate SQL cals to one or more RDBM Ss. The responses could then be
returned viaan XML response to the application server, which could then be rendered into whatever
format the origina browser request was received in (e.g., HTML, JavaScript).

NOTE: Thisisthe approach used by the Navy’s Task Force Web (TFWeb)
Enterprise Portal.

104
FOR INFORMATIONAL PURPOSES

Draft

5.5 APPLICATION AWARENESS OF THE OPERATING ENVIRONMENT

We strongly recommend using a Web gpplication server platform that provides environment data to
goplications that run on the server. For example, 2EE server components run within contexts, such as,
System Context, Log-in Context, Session Context, and Naming and Directory Context, etc. These
contexts provide environment data to the gpplication at run time.

5.6 PROTECTING APPLICATION CONFIGURATION DATA

Make sure that only the application and the adminigtrator are authorized to access the configuration
data. Use the system:-level access controls to protect configuration data stored locally with the
gpplication, assgning write and delete privileges only to the system adminigtrator, and read privileges
only to the adminigtrator and the application itsdf. If the system-level access controls done are
consdered insufficient to protect the configuration file, ore the file in encrypted form, and write the
gpplication to decrypt the file whenever it needs to referenceit (e.g., a Sart-up).

Another dternative isto store the gpplication’s configuration information remotely, such asin the same
directory from which the application retrieves cryptokeys and certificates for authenticating users. In this
way, the gpplication can retrieve its configuration information usng LDAP, and it can benefit from the
security protections of the directory server which, because it stores security data and cryptographic,
may be more strongly protected than the application’s own server.

If the configuration file are retrieved from aremote directory (or other remote database and server), the
configuration data should be transmitted from directory to application via a channd-encrypted
SSL/TLS.

Depending on the gpplication’s susceptibility to being cloned, it may be necessary to protect the
configuration data from ever being copied directly from the application. The smplest gpproach would
be to prohibit the configuration data from being transmitted back across the communication channe
over which it was received. If readback verification of the configuration received by the gpplication is
required, use encryption to prevent the data from being copied in trangit.

5.7 INTERPROCESS AUTHENTICATION: BEYOND CHALLENGE AND RESPONSE
5.7.1 Kerberos

Kerberosis not only a useful technology for implementing SSO, but aso for supporting interprocess
authentication. Indeed, because it iswiddly available, understood, and tested, K erberos represents an
effective dternative for implementing interprocess authentication at thistime, particularly in DoD
goplications.

105
FOR INFORMATIONAL PURPOSES

Draft

5.7.2 X.509

At thistime, interprocess authentication using X.509 certificates is unworkable. The X.509 certificate
management infrastructure is not designed in away that it can easilly accommodate the on-the-fly
delegation of user identity certificates to processes operating on a user’ s behdf, nor easly
accommodate the need to rapidly expire certificates used as interprocess authentication tokens.

That said, X.509-based (as well as other non-K erberos) interprocess authentication schemes and
infrastructures have been proposed. A handful arein development, mainly by organizationsinvolved in
supercomputing. Significant isthat being developed by the Globus Project as part of its Grid Security
Infrastructure (GSI). The GSI provides an SSO, run-anywhere authentication service based on SSL
and X.509. It has support for local control over access rights and mapping from globa to loca user
identities, for applications operating in the Globus High-Performance Computer Grid. For more

5.7.3 Secure Remote Procedure Call

Remote procedure cdl (RPC) specifications are limited to relaively narrow applications that are
confined within a single adminigtrative domain. Since many Web gpplications need to operate across
domain boundaries, RPC for Web applications needs a comprehensive security infrastructure beyond
what is possble by smply layering the RPC mechanism over SSL/TLS.

The OpenGroup DCE provides for use of authenticated RPCs between clients and servers.
Authenticated RPC works with the authentication and authorization services provided by the DCE
Security Service, specified in the RPC run-time library for the particular server application for which
authenticated RPC is being enabled. DCE specifies a number of authenticated RPC routines that can be
used by dlient-server gpplication programmersin this context.

For more information on authenticated RPC in DCE, see

5.8 USE OF MOBILE CODE
5.8.1 Use Only Approved Mobile Code Technologies

Section 4.8 of the Recommended Application Security Requirements document defines and lists the
different categories of mobile code that may be used in DoD Web applications, aswell asthe
circumstances under which they may be used (that is, must be Sgned versus. no sgnature required).

The safest approach to mobile code use would be to avoid using any Category 1 and Category 2
mobile code and to limit any mobile code to Category 3 mobile code, such as JavaScript and PDF (the
latter used for document downloads; convert al Postscript documents to PDF before posting on the
Web server). Idedlly, the client will be exposed only to HTML and JavaScript (the latter used for trees,

106
FOR INFORMATIONAL PURPOSES

Draft

forms integration, data vaidation, etc.) served from a J2EE Application Server via Java Server Pages
(JSP)/servlets.

Sarvlets offer some important benefits over earlier dynamic content generation technologies. Serviets are
compiled Java classes, so they are generaly faster than CGI programs or server-side scripts. Serviets
are safer than extension libraries, because the Java Virtua Machine (JVM) can recover from a serviet
that exits unexpectedly. Servlets are portable both at the source-code level (because of the Java Servlet
gpecification) and at the binary leve (because of the innate portability of Java bytecode).

If Java applets are used, because they fal into Category 2 mobile code, they must be digitaly sgned by
the server before they are served to the browser. DSA or SHA-1 are the DoD-mandated hash
agorithms that should be used to digitaly sgn mohile code. Java's Cryptographic Service Provider
supports validation of SHA-1 digitd Sgnatures.

5.8.2 Mobile Code Signature and Validation
Signature of application code, including mobile code signature, was discussed in Section 4.5.3.1.
5.8.3 Secure Distribution of Mobile Code

Beyond code signing and vaidation of code signatures to determine, after the fact, whether openly
transported mobile code has been tampered with in trangit, very little attention has yet been devoted to
the secure distribution of mobile code programs. That pertains to secure distribution techniques that are
designed to prevent (rather than detect) code tampering, as well as misrouting of mobile code, illicit
copying, and the like.

The currently predominant commercid modd for mobile code digtribution identifies dynamicaly linkable
parts of mobile programs by a URL. Thismodd assumes that al of the congtituent parts that make up a
mohbile program will be downloaded to a sngle location, where they will be verified, linked, possbly
dynamicaly compiled, and finally executed a that same location. Besides the obvious defects of a
digtribution management and versioning scheme based on untrustworthy URLS, thisfairly limited,
ampligtic distribution modd is neither flexible or scalable enough to support other modes of mobile-
code dissemination and deployment. The NSA identified this problem with regard to Java gpplication
distribution, and proposed an architectural solution, in the 1996 issue of Gover nment I nformation

ever pursued thiswork beyond the laboratory research stage.

The Navy-Marine Corps Intranet (NMCI) implements a process to approve mobile code before
adding it to the Gold Load (find verson of software for ingalation). Any NMCI browser that needs a
particular piece of mobile code that is not aready loaded locdly (viathe Gold Load) can go to an
approved trusted site and download the new digitaly sgned piece of mobile code viaan SSL pipe that
has been mutualy authenticated through DoD Class 3 certificates.

Other gpproaches to the problem are being defined and implemented by R& D projects in the United
States and Europe. The Transprose Project sponsored jointly by the Office of Naval Research and

107
FOR INFORMATIONAL PURPOSES

Draft

DoD Criticd Infrastructure Protection and High Confidence, Adaptable Software (CIP/SW) Research
Program is defining aflexible, scaable, and secure mobile code didtribution model and extensble
architecture for mobile code management and secure distribution that will accommodate any current or

European ESPRIT Project has developed FILIGRANE, a cryptography and smart card based system
for securing mobile code distribution (see http://mwww.dice.ucl.ac.belcryptoffiligrane)).

The design of any DoD Web gpplication system that incorporates the use of mobile code needs to
address the security of the distribution of that code. The previous examples are provided to help
dimulate your imagination as you undertake the definition of your own gpproach to solving the secure
distribution of mobile code within your specific Web gpplication.

108
FOR INFORMATIONAL PURPOSES

Draft

6.0 MAKING APPLICATIONSRESISTANT TO INTERNAL FAILURE

Avallability of applications becomes a security issue when that availability can be threatened by an
outsde attacker, in the form of adenid of service attack, or when an gpplication failure can cause or
enable other security violations, such as afailure that invalidates the access controls that protect sensitive
information. Application susceptibility to denid of service and other availability-related violationsis
addressed to a great extent by the input validation measures described in Section 5.3. But input
vaidation done will not ensure gpplication avalahility.

Applications may be made vulnerable to externaly induced failures due to faultsin their design, logic
errors and bugs in their code, and inadequate or incorrect handling of errors and exceptions. If an
attacker discoversthat an application is vulnerable because of any of these problems, he can exploit that
vulnerability to create a denid of service in the gpplication or to bypass its security protections.

Correctness of the gpplication design and implementation and effectiveness of its error and exception
handling are criticad to goplication availability in generd, and resstance to denid of servicein particular.
Secure application design was discussed in Section 3.2.9. Writing of elegant, error-free code and
avoidance of logic errors were discussed in Section 3.2.9.14. This section will ded with controlling
application operation in ways that will minimize susceptibility to failure, and correct error and exception
handling and recovery.

6.1 CONTROLLING OPERATION AND AVAILABILITY
6.1.1 Availability Requirementsfor DoD Applications

Although the availability of dl DoD applications isimportant, the requirement for availability of both
clients and serversin Misson Category 1 and other high-priority applicationsisimperative. These
applications must be designed, coded, and tested with the utmost care to diminate software errors that
could cause the gpplication to crash, as well as exploitable vulnerabilities that expose the gpplication to a
denid of sarvice attack.

Misson Category in this context does not mean Defense Mission Category (DMC, aslisted in Part 111,
Supplemental Codes, of Army Management Structure, FY2002 [DFAS-IN 37-100-02]). Rather,
regarding information systems, it is defined in the DoD Chief Information Officer (CIO) document
Public Key Enabling (PKE) of Applications, Web Servers, and Networks for the Department of
Defense (DaoD) (17 May 2001, Attachment—Definitions pp. 9-10).

Mission Category: Applicable to information systems, the category reflects the
importance of information handled by the information system relative to the
achievement of DoD goals and objectives, particularly the warfighter’ s combat
mission.

109
FOR INFORMATIONAL PURPOSES

Draft

The document definesthree priority levels for information systems. mission critical, mission
support, and administrative. The information system mission categories dl fdl under the misson
critica priority leve:

1. Mission critical (high priority): Systems handling information determined to be vitd to the
operationa readiness or mission effectiveness of deployed and contingency forcesin terms of
content and timeliness. It must be absolutely accurate and available on demand (may include
classfied informetion in atraditional context, as well as sengtive and undassfied information).
Mission critical systems include the following mission categories of sysems.

a. Mission Category 1: Defined by the Clinger/Cohen Act as Nationd Security Systems
(NSS), systemns used to perform intelligence activities; cryptologic activities related to
nationd security; systems used to perform command and control of military forces,
systemsintegra to awegpon or wegpons system; systems critical to direct fulfillment of
military or intelligence missons

b. Mission Category 2: Direct misson support sysems identified by the Commandersin
Chief (CINCs) which, if not functiona, would preclude the CINC from conducting
missions across the full gpectrum of operations, including readiness (to include personnd
management critica to readiness), transportation, sustainment, modernization,
survelllance/reconnaissance, financid, security, safety, hedth, information warfare,
information security, and contractud,;

c. Mission Category 3: Systems required to perform department-level and component-
level corefunctions.

2. Mission support (medium priority): Systems handling information thet isimportant to the
support of deployed and contingency forces. This information must be absolutely accurate but
can sugain minima delay without serioudy affecting operationd readiness or misson
effectiveness (may be classfied, but is more likely to be sengtive or unclassified).

3. Administrative (basic priority): Sysems handling information thet is necessary for the conduct
of the day-to-day business, but which does not materidly affect support to deployed forces or
the readiness of contingency forces in the short term (may be classified, but is more likely to be
sendtive or unclassfied).

As adeveoper, you must make every effort to ensure that gpplications that fall into Mission Category 1
under the misson critica priority are as error free, bug free, and vulnerability free as humanly possble.
Note: Because of the need for such high reliability in Mission Category 1 systems, it isvery
unlikely that Web technologies will be used in Mission Category 1 systems, sinceit is difficult to
provide the required assurances about the reliability of Web technology.

110
FOR INFORMATIONAL PURPOSES

Draft

The Web developer must be able to take for granted that the Web server and the operating system and
hardware platform on which it runs stisfy the rdliability requirements for the priority and misson
category of system for which they were procured.

Neverthdess, there are availability issues that are specific to Web gpplications. Some of these were
aready addressed in the context of Web gpplication integrity because in some cases, the same
gpplication vulnerability can be exploited ether to attack integrity or to ingigate adenia of service. For
example, buffer overflows may be used to create stack overflows so that malicious code may be
loaded—an gpplication integrity issue—or they may be used to cause the system to crash-an gpplication
avallability issue.

6.1.2 Input Time-Outsand Load Leve Limits

Pace time-outs and load leve limits, especidly on incoming network data accepted by the application,
to prevent attackers from launching flooding denid of service attacks.

In addition, we strongly recommend using only a Web server that can implement some form of load
shedding or load limiting to handle excessve load without crashing. For example, the Web server should
have a configurable incoming request threshold so thet if it detects an unusualy large flood of incoming
requests, it will stop processing al incoming requests once the load reaches that predefined threshold.
Network daemons should aso be configured to shed or limit excessive loads. An example is by setting
vaues(usngsetrlimt(),if running on UNIX) to limit the resources that will be used by the
daemon.

The Web server should aso be configured with reasonable time-outs on the red time used by any
process, once thistime-out threshold is reached, the process should clean up the resources dlocated to
it by the server and exit. Thiswill prevent the server from bogging down due to blocked processes, such
as hung read requests from remote servers or browser rejection of data returned to it by the server.

Similarly, the server should configure reasonable limits on the CPU time dlotted to any processto
prevent bugs in the process code from putting that process into an infinite loop.

6.1.3 Adjusting to Unresponsive Output

If abrowser is hdted or its TCP/IP channd response is dowed, the gpplication should be able to adjust
by releasing locks quickly before replying to prevent the possibility of a denid- of-service attack. Always
configure time-outs for anticipated user responses to outgoing write requests, to prevent those requests
from causing the server to hang if the client does not respond in atimely manner.

6.1.4 Preventing Race Conditions
6.1.4.1 What is a Race Condition?

A race condition is an anomaly caused by a process s unexpected critica dependence on the relative
timing of events. Race conditions usudly arise when processes attempt to access a shared resource

111
FOR INFORMATIONAL PURPOSES

Draft

(such as afile or variable), and this multiple access has not been anticipated by the developer and
properly controlled.

Mogt processes do not execute atomicaly. They are subject to interruption between ingtructions by
other processes. If aprocess is not prepared to handle such interruptions, another process may be able
to interfere with it. Use this rule of thumb: Any given pair of operations in a secure program must work
correctly regardless of how much of another process's code is executed between those operations.

The problem of failing to perform atomic actions repeatedly comes up in the file system. In generd, the
file system is a shared resource used by many programs, and some programs may interfere with its use
by other programs. Race conditionsfdl into two categories:

1. Interference caused by untrusted processes (known as a sequence or nonatomic condition).
Thiskind of interference is caused by processes that run other programs that are able to insert
actions between operations of the secure program. An attacker may invoke such untrusted
processes specificaly to cause arace condition.

2. Interference caused by two or more different trusted processes (known as deadlock, livelock,
or locking failure conditions) attempting to run the same program at the same time. Because
these different trusted processes may dl have the same privileges, they may be able to interfere
with each other in ways that other programs cannot. An attacker may be able to exploit this
type of interference.

6.1.4.2 Preventing Deadlocks

There are often Stuations in which a program must ensure that it has exclusive rights to aresource (file,
device, server process). Depending on how the gpplication is designed, multiple copies of a component
program may run smultaneoudy. A deadlock can occur if these programs are stuck waiting for each
other to release resources. For example, if one program attemptsto lock File A and File B at the same
time another program is dready holding alock for File B and attempting to lock File A, adeadlock will
occur.

6.1.4.2.1 Using Files as Locks

To avoid deadlocks, implement file locking for any files that are modified during gpplication execution.
Provide amethod for recovering the file locks if the program crashes while the lock is held. On UNIX
systems, this can be done by cresting a new file to indicate alock, and programming al processesto
cooperate with the new file or file locks.

The correct way to create alock for processes on alocal UNIX file sysemistoopen() thefilewith
the following flags set: O©_ WRONLY | O_CREAT | O_EXCL and with no permissions (the latter
prevents other processes with the same owner from obtaining the lock). O_EXCL, which isthe flag for
creating exclusve filesin UNIX, works even for root files.

112
FOR INFORMATIONAL PURPOSES

Draft

If the system is running Network File System (NFS), be sure it has been updated to the latest version,
NFSVerson 4. Previous versons did not completely support the semantics necessary for designating
filesaslocd to the client.

All programs that perform file locking must cooperate; noncooperating programs must not be alowed to
interfere with other programs’ cooperdtive file locking. Findly, the directories being used to storefile
locks must not have file permissions that alow any process except the fil€' s owner process to cregte or
removefile locks.

The Filesystem Hierarchy Standard (FHS 1997) referenced by Linux and some UNIX systems
describes standard conventions for locking files, including naming, placement, and stlandard contents of
these files. To ensure that the server application does not execute more than once on a given machine,
cregte the server’ s process identifier to be /var/run/processname.pid with the pid as its content. Also,
place devicelock filesin /var/lock. This gpproach has the minor disadvantage of leaving files hanging
around if the program suddenly halts, but it is sandard practice and that problem is easily handled by
other system tools.

Programs that cooperate in using files to represent file locks must use the same directory, not just the
same directory name, to store those lock files. Also, locks that should only work locdly (on asingle
machine) should be stored in an unshareable directory. Locks that should be obeyed by programs
distributed across separate machines should be stored in a sharegble directory. The FHS explicitly
states that /var/run and /var/lock cannot be shared, whereas /var/mail can be.

6.1.4.2.2 Other Approachesto Locking

On network servers, the act of binding to a port acts as akind of lock for the smple reason thet if an
exising server is bound to agiven port, no other server will be able to bind to that port.

Another gpproach to locking for UNIX applicationsisto use POSIX (portable operating system
interface) record locks, implemented through f cnt | () asdiscretionary locks. Because they are
discretionary, use of these locks requires al programs that need the locks to cooperate as with use of
lock files. POSIX record locking is mandated in the POSIX 1 standard, and it is supported on virtually
al UNIX and Linux systems. It can be used to lock awholefile or only portions of thet file, and it can
differentiate between read locks and write locks. If a process dies, its locks are automatically removed.

Mandatory locks, based on the UNIX System V mandatory locking scheme, can be used for files that
have their setgid bit set but that do not have their group execute bit set. Before amandatory file lock
can be applied, the file system must be mounted. Once the lock is applied, every r ead() and

wr it e() ischecked for locking, which makes mandatory locks more thorough than advisory locks.
But it dso makes them more resource intensve. Mandatory locks are available on UNIX System V and
its derivatives, and Linux systems, but not necessarily on other UNIX versons. Findly, because
processes with root privileges can be held up by amandatory lock, a hacker might exploit its use to
launch a denid-of- service attack.

113
FOR INFORMATIONAL PURPOSES

Draft

6.1.4.3 Preventing Sequence Conditions

Application programs can be interrupted between operations to allow another program to run. This
other program may be a mdicious program that is designed to abuse or subvert the interrupted
program. Carefully check dl code to identify any pairs of operaionsthat may fall if arbitrary code were
to execute between them.

The processes for loading and saving a shared variable are usudly implemented as separate, nonatomic
operations. the increment variable operation is usudly converted into aloading- and incrementing-saving
operation. For this reason, if the variable’ s memory is shared with another process, this sharing may
interfere with the incrementing.

Write secure programs to verify that arequest should be granted, and if so, to act on that request. Do
not provide any way for an untrusted user to change any of the criteria checked by the programsin
making this determination before the program is able to act on the determination. Thiskind of race
condition is sometimes caled atime of check/time of use (TOCTOU) condition.

In particular, when the program performs a series of operations on afile, such as changing its owner,
gatus, or permissions, the file should be opened in away that will prevent the file from being overwritten
while the program is running.

Cresgte files (and directories securely). For example, when creating temporary filesin UNIX, use
nkst enp(),not nmkt enp() . Assign the newly created file only aminima set of privileges; later
expand those privileges as necessary. Never set the world readable permission on afile, for this could
grant an attacker privileges he should not have.

Immediately after thefileis created, invoke the exit handler or use the file system’s semantics to unlink
the file so that the fil€ s directory entry disgppears while the file itsdf remains accessible until the last file
descriptor pointing to it is closed. In the application, the file should be accessed by passng thefile's
descriptor. Unlinking the file ensures that the file will be automaticaly deleted if the program crashes.

NOTE: Administrators may find it harder to determine how disk spaceis being
used for they will not be able to display the file system by name.

Refer to Secure Programming for Linux and UNIX HOWTO, “6.10. Avoid Race Conditions,” for
extensive information and code examples on avoiding race conditionsin UNIX gpplications.

6.1.4.3.1 Temporary Files and Race Conditions

A common trick by hackersisto create symbalic linksin the file system’ s temporary (/tmp) directory to
another file, such as the password file, while a secure program is running. The objective of this attack is
to fool an executing secure program into symbolicaly linking to ancther file when it discovers that a
given filename does not exigt, and performing the same operation (open) on the linked file.

114
FOR INFORMATIONAL PURPOSES

Draft

Do not smply reuse temporary filenames, remove and recreate them. Thiswill prevent a hacker from
obsarving the origind filename and hijacking it before it can be reused legitimatdly.

Alsp, if possble use environment varidbles in the file system to enable temporary files to be moved out
of the shareable /tmp directory into a nonshared user directory accessible only to the gpplication and its
users. If avallable, implement atemporary file directory policy in the file sysem (e.g., openwall on
Linux) to prevent processes from making hard links to files to which they have no write access, and to
prevent root processes from following symbolic links that are not owned by root.

6.1.5 Application Invocation of Backup

We strongly recommend use of aWeb and application server that provides a scheduling service that
can drive regular data archiving of the server files.

6.2 ERROR AND EXCEPTION HANDLING AND RECOVERY

The application should include an error/exception handling and recovery mechanism with cgpabilities as
will be discussed:

6.2.1 Failing Safe

Applications must be able to gracefully terminate. On termination, they must systematicaly and
completely dedllocate al resources they have used and delete al temporary data they have produced
during their execution. In addition, to be consdered secure, an application should awaysfal safe.

Fail safe means the gpplication is designed so that if it does fail, the gpplication rejects (does not
respond to) any subsequent requests or inputs. The gpplication must not be dlowed to Smply recover
when a serious error or violation occurs, for this may cause the gpplication to enter a Sate that threatens
System security.

In security-critical gpplications, any misbehavior is detected when the gpplication is processing a request
(e.g., maformed input, a can’t-get-here Sate, etc.). That should cause the application to immediately
deny service and stop processing that request. Although such process termination may be manifest to
the user as decreased reiability or usability, it will reduce the likelihood of errors causing exploiteble
security vulnerabilities.

When the gpplication stops processing a request, the application should not terminate dtogether. Thisis
particularly true of server gpplicaions; if such goplications shut down every time they receive maformed
input, they will soon be recognized as easy targets for denid of service attacks. On the other hand, if the
malformed input creates a critica condition, such as a can't-get-here date, failing sefe—i.e., complete
gpplication termination while maintaining a safe system state-may be the only acceptable dternative.
Application error handling should be designed so that different criticalities of errors are clearly defined
and recognizable by the error handling mechanism and so that only the mogt critica errors cause a
complete gpplication termination.

115
FOR INFORMATIONAL PURPOSES

Draft

The only gpplications in which the previously defined process termination may be unacceptable are
mission-critical applications, those in which the need for availability outweighs the need to protect data
confidentidity or integrity. Web gpplications, no matter how important, would not be designated
mission criticd. Thereis not a high degree of assured availability required for misson-critica
goplications.

6.2.2 Error Detection

The gpplication should contain an error detection cgpability, either one embedded in the application or
an externa detection facility linked to the application, that detects failure events, processing errors and
exceptions, and possible security violations. This capability should support appropriate levels of darms
to dert the adminigtrator of these events, errors, and violations. The capability may dlow the
adminigtrator to choose which events should trigger these darms, or it may Smply generate notifications
for dl security-relevant events. All output from this error detection capability should be integrated into
the application audit trail.

6.2.3 Resistance to Denial of Service

The gpplication’s error-handling mechanism must resst denid of service attacks in which the hacker
floods the gpplication with multiple maformed arguments (or other deta) in an attempt to cause the error
and exception-handling mechanism to consume so many resources that the gpplication no longer has
enough resources to continue processing and becomes unavailable to legitimate users.

6.2.4 Adminigtrator-Configurable Error Responses

The error-handling mechanisms should enable the adminigtrator to configure the application’ s responses
to various errors and fallures, providing at a minimum the following options for graceful termination:

Entire gpplication terminates

Erroneous process only terminates

Erroneous process and other selected processes terminate
Termination triggers user natification: YESor NO

Termination triggers adminigrator notification: YES or NO
Termination triggers automatic checkpoint restart: YESor NO.

6.2.5 Transaction Rollback and Checkpoint Restart

If the application is transaction oriented, such as a database gpplication, it should include a checkpoint
restart cgpability that dlows dlow transaction rollback after failure. Transaction rollback meansthat the
transaction is able to resume processing at the point just before it failed.

To ensure that rollback gets rolled forward to the Web application

116
FOR INFORMATIONAL PURPOSES

Draft

We strongly recommend using a Web server and application server that provides atransaction
service (standard or add-on).

Program the application to use that transaction service

For example, in the J2EE gpplication server, a condition in the backend database that resultsin the
rollback of atransaction will cause an exception to be thrown in the J2EE server. The server’ s sandard
exception-handling mechaniams can be easly used to notify the user, such asby displaying a
resubmission screen.

6.2.6 Consistency Checking Before Restart

The application should include cong stency- checking code that verifies that the validity of the
goplication’s cal arguments and basic state assumptions before restart. For example, if avariable insde
the program is meant to have only the values 1, 2, or 3, the consstence check will reved whether it
contains any other vaues, and it will generate an error condition if it does. For example, in C, macros
suchasassert () canbeused accomplish consstency checking.

6.2.7 Safe Error M essages

Standard Web server error messages may disclose information that can be exploited by attackers,
including file pathnames and system architectura details. For example, if an include fileis not found by
an executing application, it may return the following error message:

include file: c:\inetpub\wwroot\common.asp not
f ound

By including the pathname, the error message reved's to the attacker exploitable information about the
Web server directory structure. There is no reason to include such information in the error message that
is returned to the end user.

Similarly, attackers may infer characteristics of the directory structure from HTTP 301, 302, and 404
error messages. Therefore, instead of returning a generic HT TP error message when auser entersa
nonexistent URL, the gpplication should automaticaly redirect the user to amain index or home page
associated with the topmost parent directory in the Web directory structure.

Error messages may aso include unnecessary information about the Web server system architecture.
For example, an Open Data Base Connectivity (ODBC) error message may reved the brand name and
release number of the DBMS used by the application. Other error messages have been known to
contain the exact verson of the underlying operating system or of the CGI scripting engine used by the
developer. Such information can be exploited by attackers to target known vulnerabilities in a specific
technology, such as aparticular brand or version of the DBMS or operating system.

Even indirect information may be useful to an attacker. For example, an error message that reveds that
the Web server runs on an older version of an operating system or uses an older verson of aDBMS

117
FOR INFORMATIONAL PURPOSES

Draft

ggnasto the attacker that the system as awhole may not be properly maintained, and islikely to
contain exploitable vulnerabilities.

Detailed system architecture information in error messages can adso be exploited by ingdersin socid
engineering attacks, particularly in large organizations.

Error messages returned to the user when an gpplication process (or the whole gpplication) fails should
reved only aminima amount of information, just enough to help the honest user understand the genera
cause of thefailure, for example, “accessdenied’ or “invaid input.” Error messages to users should not
include file pathnames or system architecture information. But thiskind of detailed information should be
written to the gpplication’s error log and audit trail, and it should be included in any aert messages sent
to the adminigtrator.

Be aware that some brands of Web servers, DBMSs, and other COTS servers default to issuing
detailed error messages (Microsoft’s Internet Information Server, 11S, doesthis). The developer and
adminigtrator should both carefully review the error-related configuration details of the server used, as
well asthe ways errors are handled throughout the gpplication. The server should dways be
reconfigured to issue uninformative error messages to users. For example, with 1S, the administrator
can choose (in Home Directory/Configuration/App Debugging) between the default “ Send detailed
ASP error message to dient” and the lessinformative “generic error”; the latter option should dways be
selected.

Before aWeb ste is alowed to go on-line, the development qudity assurance team should
systematically check dl pages and scripts on the Site to ensure that no detailed error messages are
returned by any of them.

6.2.8 Error Logging

It is better to log too much than too little. In addition to writing the results of slandard gpplication errors
to the Web server or DBMS error log, the application error-handling mechanism should write the same
information to its own dedicated application log file. Or it should use the operating system’ s log facility
(e.g., UNIX sydog) to capture errors.

NOTE: If sydogis used by a UNIX application, the application should perform bounds
checking on arguments before passing them to sydog() to avoid buffer overflows.

118
FOR INFORMATIONAL PURPOSES

Draft

7.0 DEVELOPMENT TOOLS

7.1 APPLICATION MIDDLEWARE FRAMEWORKS

Application middieware frameworks are software packages that smplify the congtruction of distributed
applications by providing prepackaged standard mechanisms, incduding security mechanisms and the
APIs needed to integrate those mechanisms with application components.

The most sgnificant benefits accrued from using application development middieware are;

Reduced amount of required custom devel opment

Reduced risk of improper integration of gpplication components
Increased gpplication interoperability with other gpplications
Increased gpplication extengbility, portability, and reusability.

Significant application middleware packages are the Digtributed Computing Environment (DCE), the
Distributed Component Object Modd (DCOM), and the Common Object Request Broker
Architecture (CORBA), and Java Remote Method Invocation (RMI) for Java applications (CORBA is
aso tightly integrated with Java and supportive of Java development).

7.1.1 Digributed Computing Environment

DCE, deveoped by the Open Software Foundation (now OpenGroup), is the oldest of these
gpplication middleware frameworks. It may Hill be useful for extending the capabilities of legacy
gpplications bult with DCE, but it should not be used in new Web gpplication efforts. Many of the most
innovative features of DCE have been incorporated into both DCOM and CORBA. Unlike DCE, these
later middleware packages-as wdl as Java RMI—are implicitly and explicitly based on object-oriented
methodologies.

In its Recommendations for using DCE, DCOM, and CORBA (13 April 1998—part of its DIl COE
Digtributed Application Series), DISA recommends using DCE only for legacy applications.

7.1.2 NET and Digributed Component Object M odel

What Microsoft callsthe .NET managed code architecture is able to transparently control gpplication
code behavior on the client and the server. .NET includes security toolset for developers to implement
authentication, authorization, and cryptographic routines in their .NET-based applications, and it shifts
the security decision-making role from the developer to the administrator. .NET isdso sad by
Microsoft to eiminate many problems arising from flawed code, such as buffer overflows. Unlike DCE,
CORBA, and JavaRMI, .NET operates only on Microsoft Windows servers and clients, and is not
supported on non-Microsoft systems.

DCOM was designed to be Microsoft’s answer to DCE and CORBA. It is an object-oriented
distributed computing architecture designed for use in Windows NT and 2000 gpplications. In essence,

119
FOR INFORMATIONAL PURPOSES

Draft

DCOM isaprotocol that enables software components, both Web and non-Web, to intercommunicate
directly over anetwork. DCOM can operate across a number of network transport protocols, including
HTTP for Web applications. DCOM is based on the DCE RPC specification, and uses Microsoft’s
COM (Microsoft’s answer to the Object Request Broker) to provide its service to both ActiveX and
Java gpplications running on Microsoft platforms. There isa DCOM tunneling transmission control
protocol (TTCP) that alows DCOM to operate over TCP port 80, enabling browsers and Web
servers to communicate via DCOM across proxy server or firewall boundaries.

Like al Microsoft technologies, .NET and DCOM operate only on Microsoft platforms, and cannot be
used on UNIX, Linux, or any other non-Microsoft operating system. In its Recommendations for
using DCE, DCOM, and CORBA (13 April 1998, part of its DIl COE Distributed Application Series),
DISA warns againgt usng DCOM until it becomes more mature, robust, and fully understood. DISA
does, however, recommend using middieware bridges into Microsoft’s COM to enable
intercommunication with distributed gpplication components running on Windows systems.

7.1.3 Common Object Request Broker Architecture

In its Recommendations for using DCE, DCOM, and CORBA (13 April 1998, part of its DIl COE
Digributed Application Series), DISA recommends using CORBA for new digtributed gpplications. It
specificaly prescribes the use of integrated CORBA/Internet/Java products from a single vendor unless
interoperability can be verified.

According to Recommendations for using DCE, DCOM, and CORBA, CORBA isthe middleware
most widely deployed and actively used across both Windows and non-Windows systems. CORBA
object request brokers (ORB) enable developers to easily distribute objects across process and
machine boundaries, whereas the CORBA language (ISO/IEC DIS 14750) defines ORB interfacesto
software components. The CORBA specification contains an object security modd and standard
security protocols. CORBA'' s security services include identification and authentication, privilege
management, access control, message protection (confidentidity), delegation and proxy, audit, and
nonrepudiation.

CORBA s integrated both with the underlying Internet protocol layers and with the Javalanguage
enables developers to combine CORBA with the existing Web infrastructure to build distributed
goplications more quickly and easily and to use the network-oriented features of Javato more easily
integrate legacy applications into new distributed Web systems. Since 1997, the Netscape
Communicator browser hasincluded a Java- compatible verson of the CORBA-compliant Borland
VisiBroker. IBM’s WebSphere application server incorporates a CORBA ORB, aswell as Javaand
Enterprise JavaBean technologies.

Some developers may find use of CORBA, and specificaly implementation of an ORB, too
complicated for smple distributed Java gpplications. Those devel opers may wish to consder usng the
Java RMI middleware instead of CORBA to provide standard network and security servicesto their
goplications.

120
FOR INFORMATIONAL PURPOSES

Draft

Appendix C provideslinksto information on CORBA and other gpplication development middleware
products.

7.1.4 Simple Object Access Protocol

SOAP is an emerging vendor-independent Web protocol specification that supports object-oriented
distributed Web gpplications. SOAP provides a protocol for invoking for methods within servers,
services, components, and objects. The SOAP specification codifies the existing practice of usng XML
over HTTP (or SMITP) as the mechanism for method invocation. It mandates a small number of HTTP
heeders that facilitate firewall and proxy filtering. The SOAP specification dso mandates an XML
vocabulary for representing method parameters, return vaues, and exceptions.

The specification of SOAP, currently a Verson 1.2, is being expanded and refined by the World Wide
Web Consortium (WC3). In practica terms, SOAP is comparable to the method-invocation protocols
used by CORBA (110P), DCOM (ORPC), and Java Remote Method Invocation (RMI) (Java Remote
Method Protocol, [JRMP]). SOAP differs from these other protocols, however, by being atext-based
rather than binary protocol. SOAP uses XML for data encoding. That makes debugging applications
based on SOAP much easier, because XML is much easier to read than is a binary data stream.

Because of its vendor-independence and dependence on truly open Web standards (XML, HTTP,
SMTP), SOAP is being willingly adopted by mgjor Web product vendors, including , a number of
CORBA ORB suppliers (e.g., lona), IBM, the Apache Software Foundation, and others. IBM, a
sgnificant contributor to the SOAP specification, has created a SOAP toolkit for Java, which it has
donated to the Apache Software Foundation’s XML Product. Apache, in turn, has released the open
source Apache- SOAP implementation based on the toolkit. Also, Microsoft gppears to be committed
to usng SOAP within DCOM.

Please note that the current version of this document does not discuss the security of SOAP. This
exclusion stems from the fact that, dthough some SOAP implementations are available, the WC3's
SOAP specification does not yet define the security protections for SOAP.

That said, in June 2002, VeriSign, IBM, and Microsoft submitted their jointly developed Web Services
Security (WS- Security) specification to the OASIS standards body for review and, they hope,
adoption. WS- Security defines a set of SOAP extensions that can be used to implement integrity and
confidentidity in Web services applications based on SOAP, laying the groundwork for higher-leve
fecilities like federation, policy, and trust. VeriSign, IBM, and Microsoft are developing five more Web
security specifications that they plan to release in the next year and a half.

SOAP, dong with other emerging Web technologies, such as Universal Discovery, Description, and

Integration (UDDI) and Web Services Description Language (WSDL), seems positioned to become
the next generation protocol for developing distributed Web applications and Web services. For this
reason, DoD developers should become familiar SOAP and write their gpplicationsin away that will
not preclude the eventua adoption and integration of SOAP into DoD Web-based systems.

121
FOR INFORMATIONAL PURPOSES

Draft

7.2 OTHER DEVELOPMENT TOOLS
7.2.1 Compilersand Linkers

Increase the level of type checking for C and C++ by turning on as many compiler warnings as possible,
and change your code to cleanly compile with those warnings set. Strictly use ANS| prototypesin
separate header (.h) filesto ensure that al function cdls use the correct types.

If usng the GNU C Compiler (GCC) for C and C++ set the following (at aminimum) compilation flags.
gcc -Wall —Wpointer-arith -Wstrict-prototypes -O2 —W pedanti c.

Many C/C++ compilers can detect inaccurate format strings. For example, when using GCC, usethe
__attribute_ () facility (aCextenson)tomark functionstha may contain inaccurate
format grings. The following is an example of the language to include in the program’s header (.h) file
before compiling:

/[* in header.h */

#i fndef _ GNUC

define __attribute__(x) /*nothing*/
#endi f

extern void logprintf(const char *format, ...)
__attribute_ ((format(printf,1,2)));

extern void | ogprintva(const char *format, va_li st
args)

__attribute_ ((format(printf,1,0)));

The format attribute takes either printf or scanf, and the numbers that follow it are the parameter
number of the format string and the first variadic parameter respectively. Note that there are other
udfulattri bute facilities inGCC,suchasnoreturnand const.

7.2.2 Debuggers

Never deploy code compiled with debugging options on an operationa system. Be aware that
Windows NT and Windows 2000 have been reported to contain a critical vulnerability that enables an
attacker to use operating system' s standard, documented debugging interface. The interface is desgned
to enable the debugger to gain control of the program being tested and exploit other programs viathis
debugger interface, thus enabling an unprivileged user to exploit the interface to gain control of a
privileged program.

Although safeguards againgt such exploits have long been present in UNIX and Linux (and were
mentioned in Microsoft’s recent Digita Rights Management patent), as of April 1, 2002, Microsoft hed
not released an advisory or apatch to fix this vulnerability. The person who discovered the vulnerability
has posted a detailed description, including an example of an exploitation of the debugger interface. This

122
FOR INFORMATIONAL PURPOSES

Draft

has aso been published by an independent developer. This can be downloaded from the following Web

7.2.3 Web Authoring Tools

Security issues with Web authoring tools arise when atool automaticaly generates HTML from avisud
Web page design, and that HTML includes code errors, or is so excessvely large that it negatively
affects client performance (due to excessively long downloads). Other problems with code produced by
Web authoring tools are more nuisance problems, dthough at least one of these nuisances has, in fact,
manifested as akind of denid of service in that the HTML generated by the tool was so extremely
optimized for a particular brand name and version of browser that the page could not be displayed at dl
to browsers from other vendors.

Although optimizing Web pages for a particular brand name or verson of browser may seem likea
reasonable practice for Web pages that will be served on an intranet that can be guaranteed to be
accessed only using that brand name or version of browser, the implications for longer term extensbility
and maintainability are not good. What happens if parts of the user community start using a different
browser? What happensiif the vendor of the browser changes its featuresin alater verson in away that
causes the old optimized code to display incorrectly on the new browser verson? What happensif you
want to use a different Web authoring tool, one that may not recognize the nonstandard HTML
produced by the browser-dependent tool ?

It is better to write sandard HTML that is not optimized for any particular browser. In thisway, the
Web pages you create will produce the same results regardless of what browser isused (aslong asit
supports the verson of ssandard HTML you used), and their maintenance will not be dependent on use
of any particular Web authoring toal.

7.2.3.1 WYSIWYG Tools versus. Text Editorsand HTML Editors

Web authoring tools generdly fal into one of two categories. Thefirg isthe WY SWY G (“what you
seeiswhat you get”) tool, such as Microsoft FrontPage, Adobe Pagemill, and Macromedia
Dreamweaver. WY SIWY G tools enable Web authors to create Web pages visualy, smilar to
designing documents in a desktop publishing program, without one s having to write asingle line of
HTML or XML code. The latest versions of these programs aso support dynamic HTML. Although
WY SIWY G page design can speed up and development process, the resulting Web page design may
limited by limitationsin the tool’ s ability to convert avisud design into HTML that accurately
reproduces that design.

Text editors alow the developer to type as ASCII text the HTML code for the Web page being
developed. Writing HTML thisway is no different from the way UNIX manud authors used to cregte
UNIX manuas using the vi editor to type ASCII text with nroff or troff formetting tags (essentidly the
same gpproach used by the earliest eectronic typesetting systems). The benefit of this gpproach is that
the resulting HTML islikely to be very lean, excluding any unnecessary tags, completely understood by
the developer, and easy to maintain.

123
FOR INFORMATIONAL PURPOSES

Draft

HTML editors go a step beyond simple text editors. The developer Hill creates the Web page by
coding HTML tags, but the HTML editor aso provides facilities that help with coding, such as easy
code navigation features, built-in code vaidation, interfaces for eadly creating and importing style sheets
including cascading style sheets (CSS), support for Web authoring languages other than HTML (eg.,
ASP, PHP, VBScript, JavaScript), and libraries of canned CGI scripts.

A third approach to Web page generation is not to use an authoring tool at dl, but to use the Save as
HTML or Export as HTML feature built into aword processor or desktop publishing tool. Theideais
that the generated HTML should look exactly like the document from which it was generated.
Unfortunately, this gpproach to HTML generation can be quite problematic and can make page
authoring more difficult and time consuming than it would be when typing the HTML line by linewith a
text editor.

7.2.3.1.1 Common Problems with Web Authoring Tools
The most common Web authoring tool problems fall into three categories:

1. Production of bloated code, thet is, code made large by inclusion of unnecessary or irrelevant
HTML tags

2. Inclusion of nongtandard tags or errors
3. Production of code that is not browser neutral.
Although these may not immediately seem like security issues, they have security implications.

7.2.3.1.1.1 Bloated Code

Web authoring tools that generate HTML, versus those that support the programmer’sHTML coding
(i.e, WY SIWY G tools) often insert unnecessary HTML tags, and thus unnecessarily large HTML files.
Many of the default settings in Microsoft’ s FrontPage 2000, for example, cause the program to
automatically insert irrdevant alt tags that mimic the file names of graphics, aswell as unnecessary
metadata tags. At the extreme, bloated HTML files can take an unreasonably time to download to the
users browsers, particularly if the user is connecting remotely viaadia-up link.

Always review automaticaly generated HTML using atext editor or HTML editor, and strip out dl tags
and comments that are not absolutely necessary.

7.2.3.1.1.2 Nonstandard Tags and Errors

Some Web authoring tools that automeatically generate HTML may include poorly formed links and
other HTML syntax errorsthat can cause browsers to freeze up due to the inability to parse the errored
code. Errors aso can creste vulnerabilities associated with poorly formed URLs. An addition problem
arises with tools that are optimized for only one browser verson. They may generate nonstandard

HTML tags (i.e, tagsinvented by the browser vendor but not supported by any other browsers) that

124
FOR INFORMATIONAL PURPOSES

Draft

prevent the pages from being displayed correctly, or at dl, on other browsers. That point is discussed in
the next section.

Always review autométicaly generated HTML by using atext editor or HTML editor, and correct al
URL references (changing relative pathnames to complete pathnames, etc.). Replace al questionable
HTML tags, such as vendor proprietary tags, tags from later versons of HTML than that stated in the
DOCTY PE declaration, with purely standard equivaents.

7.2.3.1.1.3 Code That Is Not Browser-Neutral

Some Web authoring tools dlow developers to produce HTML that is optimized for only one brand
name or verson of browser. Thisis not a security issue itself. However, one particular tool, Microsoft's
FrontPage 2000, actudly defaults to generating code that is so drictly optimized for Internet Explorer
that the resulting Web pages smply will not display & al in other brand names of browsers. Users of
other browsers thus are shut out of the Web site.

If you use FrontPage as your Web authoring tool, be sure to turn off dl of the system defaults that
optimize code for Internet before generating any HTML. Better yet, use atool that generates code that
is absolutely browser neutra, producing the identical resultsin dl browsers.,

Always review automatically generated HTML using atext editor or HTML editor, and strip out all
browser optimizing code. Replace dl vendor proprietary tags with purely standard equivaents. Also test
al Web pages for consstent presentation and behavior in both Netscape Navigator/Communicator and
Microsoft Internet Explorer.

7.3 PROGRAMMING LANGUAGE SECURITY

Appendix D providesinformation on security issues with individua programming languages used in Web
development. These languages include

Cand C++

Visud Badc

Java

HTML

XML

ASPand JSP

CGl and Perl

Shll scripting languages
TCL

PHP

Python.

125
FOR INFORMATIONAL PURPOSES

Draft

8.0 PREPARING APPLICATIONS FOR DEPLOYMENT

8.1 PREPARING CODE FOR DEPLOYMENT
8.1.1 Remove Debugger Hooks and Other Developer Backdoors

Before deploying the application operationaly, eiminate all developer backdoors and default settings
from gpplication code. Debug commands come in two distinct forms: explicit and implicit. Recognize
and remove both from code before deploying it.

8.1.1.1 Explicit Debugger Commands

A name value pair left in the code or introduced as part of a URL is used to induce the server to enter
debug mode. Check dl URLsto ensure that they do not contain commands such asdebug=on or
Debug=YES. Hereisan example

http://ww. creditunion. gov/account check?l D=8327dsdd
i 8gj gql | kj dl as&Di sp=no

That can be intercepted and dtered by a hacker to this:

http://ww. creditunion. gov/account _check?debug=on&l D
=8327dsddi 8qj gql | kj dl as&Di sp=no

The attacker then observes the resultant server behavior.

Debug congtructs can dso be placed insde HTML code or JavaScript when aformis returned to the
server, Smply by adding another line e ement to the form construction. It would have the same results as
inthe URL attack as shown.

8.1.1.2 Implicit Debugger Commands

Such commands are seemingly innocuous dements placed in Web page code by the programmer to
make it easer to dter the system State and speed up testing time. Buit if dtered by a hacker, can have
dramatic effects on the server. The programmer usudly gives these € ements obscure names, such as
f ubar 1 or mycheck, in hopes of aso obscuring their purpose. For example:

<l-- begins -->

<TABLE BORDER=0 ALI GN=CENTER CELLPADDI NG=1
CELLSPACI NG=0>

<FORM METHOD=POST

ACTI ON="http://some_pol | . gov/ pol | ?71688591"
TARGET="sonet arget" FUBAR1="666">

<I NPUT TYPE=HI DDEN NAME="Pol | " VALUE="1122">
<l-- Question 1 -->

126
FOR INFORMATIONAL PURPOSES

Draft

<TR>

<TD align=left col span=2>

<I NPUT TYPE=HI DDEN NAME=" Questi on" VALUE="1">

Do atext search through your code to locate and remove al debug e ements before posting the Web
code, so that they cannot be found and tampered with by hackers.

Debug commands have aso been known to remain in third-party applications, such as Web servers and
database programs. If at dl possible, scan the source code for these applications to locate and remove
such commands. Or at the very least encourage the supplier of the code to do so.

8.1.2 Remove Data-Collecting Trapdoors

In the case of Web applications, the most common data-collecting trapdoor is the cookie. Federa
Government palicy, as set out in Office of Management and Budget (OMB) Director Jacob J. Lew’s
Memorandum for the Heads of Executive Departments and Agencies (M-00-13, 22 June 2000), states
that cookies must not be used on Federal Web sites. Nor must they be used by contractors operating
Web sites on behalf of Federa agencies, unless, in addition to clear and conspicuous notice, the
following conditions are met:

1. Thereisacompdling need to gather the data on the Site.

2. Appropriate and publicly disclosed privacy safeguards for handling of information derived from
cookies have been implemented.

3. The head of the agency owning the Web ste has persondly approved use of the data collecting
cookies.

This policy was particularized for DoD in the Office of the Secretary of Defense (OSD) memorandum,
dated 13 July 2000, “Privacy Polices and Data Collection on DOD Public Web Sites”

This memorandum is to remind each Component that Department of Defense
(DOD) palicy prohibits the use of Web technology which collects user-identifying
information such as extensive lists of previoudy visited sites, e-mail addresses, or
other information to identify or build profiles on individual visitorsto DOD
publicly accessible web sites. DOD policy, however, does permit the use of
“cookies’ or other Web technology to collect or store non-user identifying
information but only if users are advised of what information is collected or
stored, why it is being done, and how it is to be used. This policy will be clarified
to make clear that “ persistent cookies’ (i.e., those that can be used to track users
over time and across different Web sites) are authorized only when thereisa
compelling need to gather the data on the site; appropriate technical procedures

127
FOR INFORMATIONAL PURPOSES

Draft

have been established to safeguard the data; and the Secretary of Defense has
personally approved use of the cookie.

Please refer to Section 5.3.1.9 for information on protecting cookies at rest and in trangit.

In addition to removing any non-policy-compliant cookies that may have inadvertently been left in the
goplication, the gpplication code should dso be carefully vetted before deployment to ensure that it
does not contain any other kinds of Web bugs (see the following note) or trapdoor programs, such as
malicious trapdoors, whose purpose is either to collect or tamper with data, or to open a backdoor
channd over which an attacker could collect or tamper with data, on the Web server itsdf or on any
backend servers accessed by the application.

NOTE: A Web bug isa graphic on a Web page or in an e-mail message that is
designed to monitor who is reading the Web page or e-mail message. Web bugs
are often invisible because they are typically only 1by1 pixel in size. They are
represented as HTML IMG tags. Here is an example:

<inmg src="http://ad. doubl eclick. net/ad/

pi xel . whor eads/ NEW wi dt h=1 hei ght =1

bor der =0><I MG W DTH=1 HEI GHT=1bor der =0
SRC="http://user. preferences. gov/ pi ng?
M._SD=WebsiteTE Website 1x1 RunOfFSite A
ny&db_af cr=4B31- C2FB- 10E2C&event =r eghone&
group=regi ster & i me=2002. 10. 27.20.5 6. 37">

All IMG tagsin HTML code should be checked to ensure that they are not being
used to implement Web bugs.

8.1.3 Remove Hard-Coded Credentials

We have dready established that HTML basic authentication should never be used in DoD Web
gpplications, even over SSL-encrypted connections (see Section 3.2.6.10). Not using basic
authentication should dleviae any need for hard-coded credentialsin HTML pages.

NOTE: For anillustration of the how not way to implement SSO across multiple
Web servers see Microsoft’ s workaround at

a security practice that should not be duplicated in DoD Web applications.
8.1.4 Remove Default Accounts

Many COTS applications are preconfigured with at least one user (typically the adminigtrator) activated
by default; this default user generdly has a standard password that can be used to compromise the
systemn through the guessing of typica standard default passwords. Web gpplications often enable

128
FOR INFORMATIONAL PURPOSES

Draft

multiple default accounts, including adminigrator, test, and guest accounts. All have widely-known
default passwords.

All unnecessary accounts should be immediately disabled when the COTS Web server or other
goplication isingaled. Passwords should be changed from default on any accounts left enabled. The
vendor-provided hardening scripts and vulnerability scanners should be run to ensure that no default
accounts have been |eft active unintentiondly.

8.1.5 Replace Relative Pathnames

Always use full pathnames for any URL or filename argument, for both commands and data files. Do
not depend on the current directory, but explicitly set the directory in the code. Problems caused by
relative pathnames include:

Forcing the current (.) directory to be searched first

Loading a hogtile application or library routine instead of trusted software

Complicating the search rules for DLLS, and so forth

Introducing a vulnerability in system routines that parse filenames containing embedded spaces.
8.1.6 Remove Sensitive Comments

Do nat include comments in source code thet reved potentialy compromising information if that source
code can possible be viewed by others. An example isweb Site structure or security information. Thisis
aparticular problem with HTML source code, which can easily be viewed viathe browser’ s View
Source function. Information that absolutdy should not bein HTML comments include

Directory structures

Location of the Web root

Debug information

Cookie structures

Problems associated with devel opment

Developers names, email addresses, and phone numbers.

Comments are included in HTML filesin one of the following ways

Structured comments: Included regularly by members of large development teams working on
large Web sites, at the top of the HTML source code page, or between the JavaScript and the
remaining HTML, to let other developers know what is going on in the source code.

Automated comments: Automaticaly added to HTML pages by many Web page generation
programs Web usage programs, these comments reved precise information about the software

129
FOR INFORMATIONAL PURPOSES

Draft

used to cregte the Web page (sometimes including specific release numbers). Thisinformation
can be exploited by attackers to target known vulnerabilities in Web pages generated by those
software programs.

Unstructured comments: Informa comments inserted ad hoc by developers as memory aids.
Comments such as “The following hidden field must be set to 1 or XY Z.asp bresks’ or “Don’t
change the order of these table fields' make a hacker’ s life easier.

Thefollowing HTM L comments represent security violations:

<l --#exec cnd="rm-rf /"-->
<l--#include file="secretfile"-->

The second command appears unlikely to be a security violation, given that the httpd restricts the
content of the file name unless the Web server has exec disabled.

A smplefilter should be used to strip out al comments from HTML code before the pages are loaded
onto the Web server. In the case of automated comments, an active filter may be required to remove
comments on an ongoing basis.

8.1.7 Remove Unnecessary Files, Pathnames, and URL s

Before deploying the Web server, remove dl unnecessary files. Use a staging screening process to find
backup and temporary files (e.g., on UNIX, do arecursivefile grep of dl extensonsthat are not
explicitly alowed). Thiswill prevent file and gpplication enumeration attacks, whereby an attacker seeks
files or gpplications that may be exploitable or be useful in congtructing an attack, such as

1. Known vulnerable third-party (COTS, open source) application files or code

2. Hidden or unreferenced files and programs unnecessarily left on the Web server by the
adminigrator, including exploitable demo programs, sample code, ingdlation files, and other
unused programs and data files

3. Backup and temporary files that may contain sendgtive information.
8.1.8 Remove Unneeded Calls

The code walk-through performed as part of the gpplication’ s testing should be used to identify and
remove any cdlsin the goplication code that do not actudly accomplish anything. Examples are cdlsto
externa processes or libraries that do not exist or that have been replaced.

130
FOR INFORMATIONAL PURPOSES

Draft

8.2 RUN-TIME CONSIDERATIONS
8.2.1 Load Initialization Values Safely

Many programs reed an initidization file to alow ther defaults to be configured. To ensure that an
attacker cannot change which initidization file is used, nor create or modify the initidization file, Sore the
filein adirectory other than the current directory. Also, load user defaults from ahidden file or directory
in the user’s home directory. If the program is setuid/setgid, do not read any file controlled by the user
without first carefully filtering it as untrusted input. Trusted configuration vaues should be loaded from a
different entirdly (e.g., from/etcin UNIX).

8.3 SECURE INSTALLATION AND CONFIGURATION
8.3.1 Configure Safely and Use Safe Defaults

Faulty configuration is the source of most gpplication security problems. When gpplications are ingtdled,
it isimportant to (1) make the initid ingtdlation secure and (2) make it easy to reconfigure the system
while keeping it secure.

Do not write ingalation routines to ingtal aworking default password. If user accounts must configured
at ingdlation time, assign those accounts very strong passwords, and leave it up to the adminigtrator to
reset the passwords before the system goes into production.

Configure the most restrictive access control policy possble when ingtaling the gpplication. It will be up
to the administrator to make any changes to that policy before the gpplication goes operationa. Do not
include sample working users or allow access to all configurations in the starting configuration for the
goplication.

Write ingalation scripts to ingta| the gpplication software as safdly as possible. By default, ingal dl files
with root read and write privileges that prevent it from being accessed by any end users.

When ingtaling, make sure that any assumptions necessary for security are valid. For example, be sure
that library routines used by the application are indeed safe on the particular platform (operating system)
onwhichitisbeing ingdled. Also verify that the gpplication is being ingdled only on the anticipated
platforms before making any security assumptions about a given platform’s security mechanisms and
posture.

If there is a configuration language, the default should be to deny access until the user specificdly grants
it. Include many clear comments in the sample configuration file, if there is one, so that the administrator
understands what the configuration does.

131
FOR INFORMATIONAL PURPOSES

Draft

APPENDIX A: ABBREVIATIONSAND ACRONYMS

The following abbreviations and acronyms were used in this document.

ACL Access Control List
AES Advanced Encryption Standard
API Application program interface
ASD C3l Assstant Secretary of Defense for Command, Control,
Communications and Intelligence
C&A Certification and Accreditation
CAC Common Access Card
CAPl Cryptographic Application Programmatic Interface
CcC Common Criteria
CDR Critical Desgn Review
ClO Chief Information Officer
CERT Computer Emergency Response Team
CGl Common Gateway Interface
CinC Commander in Chief
COE Common Operating Environment
COM Common Object Modd (Microsoft)
CORBA Common Object Request Broker Architecture
COTS Commercid-Off-The- Shdlf
CRL Certificate Revocation List
CPU Central Processng Unit
CsP Cryptographic Service Provider
CSS Cascading Style Sheets
DAA Desgnated Accrediting Authority
DAC Discretionary Access Control
DAL Data Abgtraction Layer
DBMS Database Management System
DCE Digtributed Computing Environment (OpenGroup)
DCOM Distributed Component Object Model (Microsoft)
DES Data Encryption Standard
DID Defense In Depth
DIl Defense Information Infrastructure
132

FOR INFORMATIONAL PURPOSES

Draft

DISA Defense Information Systems Agency

DITSCAP DaoD Information Technology Security Certification and
Accreditation Process

DHTML Dynamic Hyper Text Markup Language

DLL Dynamic Link Library (Microsoft)

DMC Defense Mission Category

DMZ Demilitarized Zone

DoS Denid Of Service

DoD Department of Defense

DPA Didtributed Password Authentication

DTD Document Type Definition

EAL Evauation Assurance Level (Common Criteria)

E-mal Electronic Mall

FAQ Frequently Asked Questions

FHS Filesystem Hierarchy Standard

FIPS Federal Information Processing Standard (NIST)

FSO Fed Security Office

FTP File Transfer Protocol

GCC GNU C Compiler

GCCs Globa Command and Control System

GIF Graphic Interchange Format

GIG Globd Information Grid

GINA Graphicd Identification and Authentication (Microsoft)

GOTS Government- Off- The- Shelf

GSl Grid Security Infrastructure

GSS-AP Generic Security Service Application Program Interface

GUI Graphica User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HTML Hypertext Markup Language

[&A | dentification and Authentication

1A Information Assurance

IASE Information Assurance Support Environment (DISA)

IATF Information Assurance Technica Framework (NSA)

133

FOR INFORMATIONAL PURPOSES

Draft

ID | dentification, dentifier
IETF Internet Engineering Task Force
IFS Internal Field Separator
IP Internet Protocol
IPSEC | P security protocol
1S Internet Information Server
IPC | nterprocess Communication
SO Internationa Standards Organization
V&V Independent Verification and Vdidation
|SSE Internet System Security Engineering
J2EE JavalJava? Enterprise Edition (Sun Microsystems)
JAAS Java Authentication and Authorization Service (Sun
Microsystems)
JOBC Java Database Connectivity APl/service (Sun Microsystems)
JTC Joint Interoperability Test Command
JRMI Java Remote Method Invocation
JRMP Java Remote Method Protocol
JSP Java Server Pages (Sun Microsystems)
JTA Java Transaction APl (Sun Microsystems)
VM JavaVirtud Machine (Sun Microsystems)
KRL Key Revocation List
LDAP Lightweight Directory Access Protocol
MAC Mandatory Access Control; Message Authentication Check;
Message Authentication Code
NFS Network File System
NIAP Nationd Information Assurance Partnership (NIST)
NIST Nationd Ingtitute of Standards and Technology
NSA Nationa Security Agency
NSS Nationa Security Systems
NTLM NT LAN Manager
OCsP Online Certificate Status Protocol
OoDBC Open Data Base Connectivity
ORB Online Request Brokers
(O Operating System
134

FOR INFORMATIONAL PURPOSES

Draft

Oosb Office of the Secretary of Defense
OWASP Open Web Application Security Project
PAM Puggable Authentication Module
PC Personal Computer
PDF Portable Document Format (Adobe)
PDR Prdiminary Design Review
PICS Patform for Internet Content Selection
PKE Public Key-Enabling
PKI Public Key Infragtructure
PMO Program Management Office
POP Post Office Protocol
POSIX Portable Operating System Interface (“X” does not stand for
anything)
PRNG Pseudorandom Number Generator
RBAC Role-Based Access Control
RDBMS Redationa Database Management System
RFC Request for Comments (IETF)
RMI Remote Method Invocation (Java)
RPC Remote Procedure Call
SBU Senstive But Unclassified
SDK Software Developer’ s Kit
stuid Set User Identification (UNIX)
sgid Set Globd Identification (UNIX)
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SP Specid Publication
SPI Service provider interface
SQL Structured Query Language
SRR System Requirements Review
SSE-CMM System Security Engineering Capability Maturity Moddl
SSL Secure Sockets Layer
SSO Single Sgn-On
SSPI System Support Providers Interface (Microsoft)
ST&E Security test and evaluation
135

FOR INFORMATIONAL PURPOSES

Draft

STIG Security Technica Implementation Guide (DISA)
TCB Trusted Computing Base
TCP Transfer Control Protocol
TDY Temporary Duty Y onder
TFW Taskforce Web (Navy)
TLS Transport Layer Security
TOCTOU Time Of Check/Time Of Use
TPEP Trusted Product Evauation Program (NSA)
TTCP Tunneling Transmission Control Protocol
TTY,TTYP adumb termina (UNIX), such as VT220 (both abbreviations
derive from the word “teletype,” but no longer dencteit)
UDDI Universa Discovery, Description, and Integration
URI Uniform Resource |dentifier
URL Uniform Resource Locator
UTF Unicode Transformation Format (E.G., UTF-8)
VPN Virtud Private Network
wW3C World Wide Web Consortium
WDG Web Design Group
WSDC Web Services Description Language
WS Web Services
WYSWYG What You Seels What Y ou Get
XML Extensble Markup Language
136

FOR INFORMATIONAL PURPOSES

Draft

APPENDIX B: REFERENCES AND SUGGESTED READING

B.1 REFERENCESUSED TO PREPARE THISDOCUMENT

The following documents and orline resources were used as sources for some of the information and
concepts presented in this developer’ s guide.

Information Assurance Technical Framework (IATF), Version 3, September 2000

B.1.1 DESIGN AND ARCHITECTURE

Peter G. Neumann, SRI Internationd: CHATS (Composable High-Assurance Trustworthy Systems)
Principles (DARPA Contract No. N66001-01-C-8040 Task 1 Deliverable A003, 15 April 2002)

Joseph Y oder, Department of Computer Science, University of lllinois at Urbana- Champaign & Jeffrey
Barcalow, Reuters Information Technology: Architectural Patterns for Enabling Application
Security

Defense Information Systems Agency (DISA) Joint Interoperability & Engineering Organization (JEO)
Center for Computer Systems Engineering (JEXF): Recommendations for Using DCE, DCOM, and
CORBA (MITRE-DAS-C1, 13 April 1998)

Microsoft Corporation: Security in the Microsoft .NET Framework

B.1.2 ACQUISITION OF THIRD-PARTY PRODUCTS

Nationa Security Telecommunications Information Systems Security Policy 11, “National Policy
Governing the Acquisition of Information Assurance and | A-Enabled | nformation Technology
(IT) Products’ (NSTISSP 11)

137
FOR INFORMATIONAL PURPOSES

Draft

B.1.3IMPLEMENTATION

David A. Wheder: Secure Programming for Linux and UNIX HOWTO

Joanna Oja, Department of Computer Science, University of Helsinki: Secure Software Devel opment
(white paper and dide presentation)

Open Web Application Security Project (OWASP): A Guide to Building Secure Web Applications
and Web Services

B.1.3.1 Cryptographic Implementation

Application Security, Inc.: Encryption of Data at Rest

138
FOR INFORMATIONAL PURPOSES

Draft

Cambridge Universty: PKCS#11 Interface

B.1.3.2 Avoiding Malicious Content

Computer Emergency Response Team Coordination Center: Under standing Malicious Content
Mitigation for Web Devel opers

B.1.3.3 Mobile Code

DoD Chief Information Officer: Policy Guidance for use of Mobile Code Technologiesin
Department of Defense (DoD) Information Systems (7 November 2000)

Word)

B.1.3.4 Security Issues of Specific Programming L anguages

Eduardo B. Fernandez: Computer Data Security, Chapter 11, Application and Language Security

Gary McGraw and Edward Felten: “ Twelve Rules for Developing More Secure Java Code’
(Javaworld, December 1998)

B.1.3.5 Testing

Nava Research Laboratory: Handbook for the Computer
Security Certification of Trusted Systems, Chapter 10, Penetration Testing (NRL Technical
Memorandum 5540:082A, 24 January 1995)

139
FOR INFORMATIONAL PURPOSES

Draft

B.2 SUGGESTED FURTHER READING

The following documents and on-line resources were also found to be generaly helpful, and encourage
developersto refer to them for additiona information, examples, and gpproaches to implementing
security in Web applications.

Lincoln D. Stein and John N. Stewart: The World Wide Web Security FAQ

Jeremiah Grossman, WhiteHat Security, Inc.: Web Application Security: The Land That Information
Security Forgot

pt (mirror)

Security Focus Online Web Application Security Forum

B.2.1 DESIGN AND ARCHITECTURE

P. Boudra, Jr., Office of Infosec Systems Engineering (19), Information Systems Security Organization,
Nationa Security Agency: Rules of System Composition: Principles of Secure System Design
(Technica Report 1-93, Library No. S-240, 330, March 1993)

Eduardo B. Fernandez: Computer Data Security, Chapter 5, The Design of Secure Systems

Microsoft Corporation: Designing Secure Applications

140
FOR INFORMATIONAL PURPOSES

Draft

Premkumar T. Devanbu, Philip W-L Fong, and Stuart G. Stubblebine: Techniques for Trusted
Software Engineering

Sotiris loannidis and Steven M. Bellovin: Sub-Operating Systems. A New Approach to Application
Security

Paul A. Green, J.: The Art of Creating Reliable Software-Based Systems Using Off-the-Shelf
Software Components

B.2.1.1 Security Middlewar e Frameworks

Chris Cledand, Principal Software Engineer and Rob Martin, Senior Software Engineer, Object
Computing, Inc. (OCI): CORBA Security: An Overview

B.22IMPLEMENTATION

Nationd Center for Supercomputing Applications (NCSA): Secure Programming Guidelines

Frédéric Raynd, Christophe Blaessand Christophe Grenier: Avoiding Security Holes When
Developing an Application—Part 1

141
FOR INFORMATIONAL PURPOSES

Draft

Steve Bdlovin: Shifting the Odds-Writing (More) Secure Software

B.2.2.1 UNIX Applications

Thamer Al-Herbish: Secure UNIX Programming FAQ

B.2.2.2 Implementing Specific Security M echanisms
B.2.2.2.1 Identification and Authentication

Nick Kew: Login on the Web

B.2.2.2.2 Public Key Infrastructure and Public Key-Environment

DISA Information Assurance Support Environment Document Library

Specificdly, see the following documents:

Department of Defense (DoD) Class 3 Public Key Infrastructure (PKI) Criteriafor
Sdecting Cryptographic Toolkits (Draft, 20 November 2000)

DoD CLASS 3 PKI Public Key-Enabling of Applications (29 September 2000)

DoD CLASS 3 PKI Public Key-Enabled Application Requirements, Verson 1.0 (13
July 2000)

142
FOR INFORMATIONAL PURPOSES

Draft

B.2.2.2.3 Symmetric Cryptography

NSA Advanced Encryption Standard Algorithm Vaidation List

B.2.2.2.4 Integrity Controls

F. Chang, A. Itzkovitz, and V. Karamcheti: Secure, User-Level Resource-Constrained Sandboxing

Anurag Acharyaand Mandar Rgje: MAPbox—Using Parameterized Behavior Classesto Confine
Applications

Wayne Schroeder, San Diego Supercomputer Center, University of Cdiforniaat San Diego: The SDSC
Encryption/Authentication (SEA) System (April 1998)

B.2.2.3 Under standing and Minimizing Specific Vulnerabilities
B.2.2.3.1 Mobile Code Use

Dan Seth Wallach: A New Approach to Mobile Code Security (January 1999)

Philip W. L. Fong and Robert D. Cameron: Proof Linking—An Architecture for Modular
Verification of Dynamically-Linked Mobile Code

143
FOR INFORMATIONAL PURPOSES

Draft

B.2.2.3.2 Buffer Overflow

Susan Gerhart, Embry-Riddle Aeronautical University: How Do Buffer Overflow Attacks Work?

Jedidiah R. Crandall, Susan L. Gerhart and Jan G. Hogle, Embry-Riddle Aeronautical University:
Driving Home the Buffer Overflow Problem: A Training Module for Programmers and Managers

Crigpin Cowan, Perry Wagle, Caton Pu, Steve Besttie, and Jonathan Walpole, Oregon Graduate
Schoal Indtitute of Science and Technology: Buffer Overflows: Attacks and Defenses for the
Vulnerability of the Decade

Crigpin Cowan, Cdton Pu, David Maier, Jonathan Wapole, Peat Bakke, Steve Bedttie, Aaron Grier,
Perry Wagle, and Qian Zhang, Oregon Graduate School Ingtitute of Science and Technology, and
Hesather Hinton, Ryerson Polytechnic Ingtitute: StackGuard: Automatic Adaptive Prevention of
Buffer-Overflow Attacks

Gary McGraw and John Viega: Make Your Software Behave: Learning the Basics of Buffer
Overflow

Pierre-Alain Fayolle and Vincent Glaume, ENSEIRB Networks and Digtributed Systems: A Buffer
Overflow Study: Attacks and Defenses

David Wagner, Jeffrey S. Fodter, Eric A. Brewer, and Alexander Aiken, University of Cdlifornia,
Berkdey: A First Sep Towards Automated Detection of Buffer Overrun Vulnerabilities

144
FOR INFORMATIONAL PURPOSES

Draft

Smashing the Stack for Fun and Profit

B.2.2.3.3 Format String Attacks

Tim Newsham, Guardent, Inc.: Format String Attacks

B.2.2.3.4 Structured Query Language | njection

SPI Dynamics. SQL Injection: Are Your Web Applications Vulnerable?

B.2.2.4 Security Issues of Specific Programming L anguages
B.2.2.4.1 Java

OpenGroupX/Open Single Sign-On Service Pluggable Authentication Modules (XXSO-PAM)
Specification

145
FOR INFORMATIONAL PURPOSES

Draft

Java Community Process, Java Specification Request: Java Certification Path Application Program
Interface (AP!)

Todd Sundsted: Secure Your Java Apps from End to End, Part —The Foundation of Java Security:
Virtua Machine and Byte Code Security

Todd Sundsted: Secure Your Java Apps from End to End, Part 2-Don’t Let Haws Compromise
Application Security

Li Gong's Java Security Homepage
http://java.sun.com/peopl &/gong/javalsecurity.html

Gary McGraw and Edward Felten: “ Twelve Rules for Developing More Secure Java Code’
(Javaworld, December 1998)

146
FOR INFORMATIONAL PURPOSES

Draft

Raghavan N. Srinivas. “ Java Security Evolution and Concepts’ (JavaWorld, July 2000)

Lujo Bauer, Andrew W. Appdl, and Edward W. Felten: Mechanisms for Secure Modular
Programming in Java (Princeton Universty Computer Science Technica Report TR-603-99, July
1999)

Drew Dean, Edward W. Felten, Dan S. Walach, and Dirk Bafanz: Java Security: Web Browsers and
Beyond (Princeton University Computer Science Technica Report TR-566-97, February 1997)

Dirk Bdfanz and Ed Fdten: A Java Filter (Princeton University Department of Computer Science
Technicd Report 567-97, September 1997)

B.2.2.4.2 Common Gateway I nterface and Perl

Michadl Van Biesbrouck: Tutorial on Writing Secure CGI Scripts

John Haperin, Maurice L. Marvin, Dave Andersen, Zygo Blaxell, Joe Sparrow, Keith Golden, James
W. Abendschan, Jennifer Myers, Jarle Fredrik Greipdand, and David Sacerdote: Safe CGlI
Programming

147
FOR INFORMATIONAL PURPOSES

Draft

B.2.2.4.3 Extensible Markup Language and Simple Object Access Protocol

Pete Lindstrom: “ Specid Report: The Language of XML Security” (Network Magazine, 5 June 2001)

Murdoch Mactaggart: Enabling XML Security—An Introduction to XML Encryption and XML
Sgnature

Ernesto Damiani, Universita di Milano; Sabrina De Capitani di Vimercati, Universta di Brescias Stefano
Paraboschi, Politecnico di Milano; and Pierangda Samarati, Universtadi Milano: Design and
Implementation of an Access Control Processor for XML Documents

Kirill Gavrylyuk, Microsoft Corporation: Building Secure Web Services with Microsoft SOAP
Toolkit 2.0

B.2.2.4.4 C and C++

SecuriTeam: Using Environment for Returning into Lib C

148
FOR INFORMATIONAL PURPOSES

Draft

B.2.2.4.5 Avoiding Vulnerabilities Associated with Shellcode

Chris Anley, Next Generation Security Software: Creating Arbitrary Shellcode in Unicode
Expanded Strings-The “ Venetian” Exploit

Frédéric Rayna, Christophe Blaess, and Christophe Grenier: Avoiding Security Holes When
Developing an Application — Part 2: Memory, Stack and Functions, Shellcode

B.2.2.4.6 PHP

Shaun Clowes, SecureRedity.com: “A Study In Scarlet—Exploiting Common Vulnerahilitiesin PHP
(LinuxSecurity News 6 July 2001)

B.2.2.5 Application Platform Security: Web Servers
B.2.2.5.1 General Web Server Security

NSA: Web Server Protection Profile, Version 0.6, 31 July 2001 (draft)

f
B.2.2.5.2 Apache Web Server Security

Cross- Site Scripting Info

B.2.2.5.3 Java Web Server Security

Removing Examples and Unnecessary Serviets

B.2.2.5.4 Lotus Domino Web Server Security

David Litchfield, Next Generation Security Software: Hackproofing Lotus Domino Web Server

149
FOR INFORMATIONAL PURPOSES

Draft

B.2.2.5.5 Microsoft I nternet I nformation Server Web Server Security

Microsoft Corporation: HOWTO Review ASP Code for CSS (Cross-Ste Scripting Security |ssues)
Vulnerability

B.2.2.5.6 iPlanet Portal Server Security

iPlanet Portd Server Pluggable Authentication AP

B.2.2.6 Database Application Security
B.2.2.6.1 Oracle Applications

William T. Abram: Developing a Secure Oracle Database Application (GSEC v1.2f, 27 December
2001)

David Litchfield, Next Generation Security Software: Hackproofing Oracle Application Server: A
Guideto Securing Oracle 9

Oracle Corporation: Oracle Application Server Security |ssue—Problem Description and
Immediate Methods for Eliminating the Problem

Chris Anley, Next Generation Security Software: Advanced SQL Injection in SQL Server
Applications

150
FOR INFORMATIONAL PURPOSES

Draft

B.2.2.6.2 Microsoft SQL Server Applications

SPI Dynamics. SQL Injection: Are Your Web Applications Vulnerable?

David Litchfield, Next Generation Security Software: Web Application Disassembly with ODBC
Error Messages

B.2.2.7 Browser Security

Nationa Security Telecommunications and Information Systems Security Committee (NSTISSC)
Secretariat (142), Nationa Security Agency (NSA): Advisory Memorandum on Web Browser
Security Vulnerabilities (NSTISSAM INFOSEC 3-00, August 2000)

B.23TESTING

David A. Wagner: Satic Analysis and Computer Security-New Techniques for Software
Assurance

B.24 RETROFITTING SECURITY INTO THIRD-PARTY AND LEGACY
APPLICATIONS

Crispin Cowan and Cadton Pu, Oregon Graduate Indtitute of Science and Technology: Survivability
froma Sow’s Ear: The Retrofit Security Requirement

151
FOR INFORMATIONAL PURPOSES

Draft

Timothy Fraser, Lee Badger, and Mark Feldman, TIS Labs, Network Associates, Inc.: Hardening
COTS Software with Generic Software Wrappers

Crigpin Cowan, Heather Hinton, Calton Pu, and Jonathan Walpole, WireX Communications, Inc.: The
Cracker Patch Choice: An Analysis of Post Hoc Security Techniques

John C. Dean, Nationd Research Council Canada Software Engineering Group; and Li Li, Entrust
Technologies: Issuesin Developing Security Wrapper Technology for COTS Software Products

Jamie Payton, Gerur Jonsdéttir, Daniel Flagg, and Rose Gamble, Software Engineering and
Architecture Team, Department of Mathematical and Computer Sciences, University of Tulsas Merging
Integration Solutions for Architecture and Security Mismatch

B.3BOOKS

The following books may aso be helpful to Web application developers. The uniform resourse locators
(URLYS) link to information online about these books. Thislist does not purport to be exhaugtive.

Joel Scambray and Mike Shema Hacking Exposed, Web Applications

(NOTE: a McGraw Hill UK URL is given because the U.S site is broken and will not
return information about the book.)

Ulrich Lang and Rudolf Schreiner: Devel oping Secure Distributed Systems with CORBA

152
FOR INFORMATIONAL PURPOSES

Draft

John Viegaand Gary McGraw: Building Secure Software: How to Avoid Security Problems the
Right Way

Rahul Sharma, Beth Stearns and Tony Ng: J2EE Connector Architecture and Enterprise
Application Integration

153
FOR INFORMATIONAL PURPOSES

Draft

APPENDIX C: THIRD-PARTY SECURITY TOOLS

C.1 SELECTING THIRD-PARTY TOOLS

C.1.1CATEGORIESOF TOOLS

The third- party tools for application developers listed in this gppendix fall into three genera categories
from a procurement standpoint: (1) government off-the-shelf (GOTYS), (2) commercid off-the-shelf
(COTY), and (3) public domain. There are various subcategories within some of these categories.

C.1.1.1 Government off-the-shelf

GOTSindicates that Government funding paid for development of the tool. The developer may be
elther a government organization or, more likely, a contractor and possibly a commercia vendor directly
contracted and paid by the government to develop the tool.

C.1.1.2 Commercial Off-the-shelf

COTS tools are developed commercidly with no government funding. Any price discount to
government users must be negotiated contractudly.

C.1.1.3 Public Domain

Department of Defense Directive 8500aa, “ Information Assurance (1A),” paragraph 4.16 states: “Public
domain software products shal only be used in DoD information systems with a validated requiremen,
an assessment of the product’ s risk, and an approva for use by the responsible Designated Approving
Authority (DAA).”

That said, as you will observe from the tables that follow, there are a significant number of ussful open
source tools that could be very helpful to developers of DoD Web applications. We strongly encourage
you to research these tools and to make the case for their use in your Web applicatiors. It takes only
one gpprova of apublic domain tool to establish a precedent for dlowing its use.

The public domain tools of interest to gpplication developers are, by and large, open source, versus
shareware or freeware. With the advent of the open source license, there has been some blurring of the
ditinctions between these three types of public domain software ditribution. Still, a description of each
type of public domain license has been included here for information purposes.

C.1.1.3.1 Open Source

Open source software is distributed over the Internet, often in source code form, under an open source
digtribution license. The license typicaly dlowsfor free use of the software unlessit is incorporated and
resold in acommercid product, in which case aroydty must be paid to the developer or supplier for

154
FOR INFORMATIONAL PURPOSES

Draft

each derivative license sold. Details of different individual and organizational open source licenses vary,
and the license for a particular tool should be reviewed to ensure that the tool may indeed be used free
of charge.

C.1.1.3.2 Shareware

Shareware is distributed over the Internet in either executable form or source code form, under a
shareware license that typically requires payment of anomina fee to the developer or supplier to cover
his her cogts of development, distribution, and support. Shareware licenses prohibit the customer from
repackaging and resdling the software for a profit. Shareware that is repackaged for sdle must be
licensed with gppropriate roydties paid to the origina developer supplier.

C.1.1.3.3 Freeware

Freeware is distributed over the Internet in either executable form or source code form. It isfree of
charge with the understanding that the software will not be repackaged and sold. Freeware that is
repackaged for sale must be licensed with appropriate royaties paid to the original developer or
supplier.

C.1.1.4 Sdlection Criteria

Assessing and selecting the right third-party security tool or technology will require a significant amount
of research and andysis. DoD information technology (IT) procurement policy gppliesto the entire
range of possible IT products, and thus it may be difficult to derive guidance from it thet is specificaly
targeted to congderation any particular technology. Similarly, technology evauation criteria such as the
Common Criteria (vaidated under the National Information Assurance Partnership [NIAP]), Nationa
Ingtitute of Standards and Technology (NIST) technica certification criteria, and others focus
predominantly on one aspect of atechnology. Examples are its security assurance and its compliance
with standards. Collectively, however, these various policies and criteriamay be used as the source for
deriving a st of relevant assessment criteriafor a particular type of technology.

In this section, we have attempted to provide akind of derived set of assessment criteriato be used
when evauating third-party security tools for use in the development of DoD Web applications. These
areinformd criteria, intended to provide a set of consderations to keep in mind when researching and
assessing tools that you may then want to formaly procure following standard DoD procedures and

policy.
C.1.1.4.1 NSTISSP 11 and the Need for NI AP Certification of COTS | A Products

Regardless of the other selection criteria established for COTS product procurements, Nationa
Security Telecommunications Information Systems Security Policy (NSTISSP) 11, Nationd Policy
Governing the Acquigtion of Information Assurance and | A-Enabled Information Technology (IT)
Products states that, as of July 2001, dl 1A and | A-enabled products procured for incluson in DoD
systems that will be used to enter, process, store, display, or transmit nationa security information must

155
FOR INFORMATIONAL PURPOSES

Draft

products must be evaluated or approved not by NIAP, but by the Nationa Security Agency (NSA).
Note: The policy also includes a provision for obtaining waivers to these requirements. Until a
wide range of NIAP-certified | A and | A-enabled products are available that cover the full
spectrum of DoD application functional requirements, that provision may be the only viable
approach to complying with NSTISSP 11.

C.1.1.4.2 Functional and Quality Criteria

Functionality and performance — The tool supports the functiona and performance
requirements for the capability it is intended to provide.

Correctness — Thetool operates according to its specifications and does not contain
undocumented fesatures, errors and bugs, or security vulnerabilities.

Security — Thetool will not introduce security vulnerahilitiesinto any of the other Web
application components or interfaces between those components.

Integration — Thetool includes secure (non compromising) application program interfaces
(APIs) for integration into the Web application; whenever possible, these APIs are based on
published standards.

Auditability — The tool’ s security events can be defined to the Web gpplication' s audit system
and monitored by its violation detection system.

Performance impact — The performance overhead added by the tool is not unacceptable

User friendliness — If thetool has auser interface, it is not difficult to use and does not require
aggnificant amount of training.

Product and supplier track record — Thetoal itsdf has areputation for quaity and reliability.
Thetool’s supplier is known to be reliable and is not likely to go out of business during the time
the tool will be used in your gpplication. If your organization has had no previous dealings with
apaticular tool or its supplier, you should ask the supplier for alist of customer references.

Y ou should aso post some messages on developers' forums (newsgroups, bulletin boards,
etc.), asking for other developers to share their experiences with the supplier and, specifically,
the technology you are consdering.

C.1.1.4.3 Independent Security Certification

In addition to satisfying the functiond criteria discussed, tools that perform security functions (i.e,
trusted functions, privileged functions, sengtive functions) should idedlly have had their security
functiondity and assurance independently certified. Indeed, there isa DaoD policy for security
technologies that states they must be eva uated against the CC under NIAP.

156
FOR INFORMATIONAL PURPOSES

Draft

Unfortunately, it is likely that this policy will take along time to be fully implemented, if it ever can be.
The time and cost for vendorsto atain NIAP CC evauations for their products will probably limit the
number of evauated products available a any given time. In many cases, the types of COTS tools you
will find useful are not unlikely to be submitted for evauation; nor are public domain supplierslikely to
have thar tools evduated. Although this redity in no way minimizes the inherent vaue of independent
security certification, it does indicate that whole categories of security tools useful in the development of
Web gpplications will probably never undergo CC evauation. Furthermore, there is an indication that
the tools that are evaluated will not be sufficient in the variety of functions they perform to collectively
provide dl of the security functionality needed in sophisticated Web gpplications. Therefore, we are
proposing a strategy for ng tools that have not undergone and probably will not undergo CC
evauation.

If an available tool in a category has undergone, or iswell on its way to achieving CC evauation, that is
the tool you should choose (by DoD policy mandate). However, if there are no CC-evauated toolsin a
given category, we suggest you consder the following hierarchy of other possible security certifications,
to determine whether atool has attained any of these certifications.

This hierarchica lists progresses in descending order through a series of next most desirable
certifications. Asyou research and assess tools, whenever two or more functionaly comparable non
CC-evduated tools are available, you can determine whether any has one of the other certifications on
thislist. If s0, choose the candidate with the most desirable security certification.

This gtrategy isintended as a casua one for helping you narrow down options from multiple available
technologies. It will be up to your DAA to decide whether awaiver of the CC evauation requirement is
warranted in the case of a particular product or technology. Still, the fact that a product has one or more
of the other certifications may be useful in helping you to sdll the waiver request to your DAA. Table C-
1 provides details.

Table C-1. Hierarchical List of Possible | nfor mation Assurance Certifications

NSTISSP 11 REQUIRED (MOST DESIRABLE)

la COTS: CC validation under NIAP

1b GOTS: Certification by NSA in accordance with NTISSP 11

NEXT MOST DESIRABLE (when no acceptable NIAP -validated product exists)
(in descending order of preference)

2 CC validation not yet appearing on the NIAP validated products list, by a
certification authority in a country included in the CC recognition arrangement

3 Included on NIST’s Federal Information Processing Standard (FIPS) 140
validated products list

4 Recent evaluation (within the past two product releases) under the TCSEC, by

the National Computer Security Center (NCSC) in its Trusted Product Evaluation
Program (TPEP), or by NIST

5 Included on NSA Advanced Encryption Standard (AES) Validation List or Triple

157
FOR INFORMATIONAL PURPOSES

Draft

Data Encryption Standard (DES) Validation List

6 Accredited according to DoD Information Technology Security Certification and
Accreditation Process (DITSCAP) or DCID 6/3 C&A process

7 Included on an approved IA products list of a C/S/A

8 Accredited by a civilian intelligence, diplomatic, or law enforcement agency or
included on an approved IA products list of such an agency, or both.

9 Evaluated recently (within the past two product releases) under the Information
Technology Security Evaluation Criteria (ITSEC)

10 Accredited for North Atlantic Treaty Organization (NATO) use, or on a NATO-
approved IA products list

11 Certified by a widely recognized commercial security organization, such as ICSA
Labs

12 Granted an award by one or more respected information security or
defense/military trade publications

13 Given outstanding reviews by one or more respected information security or
defense/military trade publications

C.2THETOOLS

Thetoolslisted in Table C-2 are identified for information purposes only; inclusion of atool does not
congtitute an endorsement of that tool. No technica assessment was done for any of these tools,
beyond reading the product literature (or, in the case of public domain tools, the high-leve technicd

description).

Table C-2. Ligt of Third-Party Security Tools

Main Function Supplier Tool Name Description Categ. | URL
Signature KyberPass Validation Digital signature validation and COTS http://www.kyberpass
validation TrustPlatform OCSP-based certificate validation .com/products/valida
tion_trustplatform.html
Signature Gilian G-Server Digital signature of Web content; COTS http://www.gilian.com
validation Technologies validates signature before serving /gserver.html
content to browser
Signature Gilian ExitControl Verification of Web content validity COTS http://www.gilian.com
validation Technologies before serving it to browsers /gserver.html
Secure Sockets RSA Security BSAFE SSL-C Software developer kit (SDK) of C COTS http://www.rsasecurity
Layer (SSL) components for integrating SSL into C .com/products/bsafe/s
applications; includes support for X.509 slc.html
certificates for server and client
authentication and certificate
verification interoperable with
Netscape, Microsoft, and VeriSign
certification schemes
SSL RSA Security BSAFE SSL-J SDK of Java components for COTS http://www.rsasecurity
integrating SSL into Java applications; .com/products/bsafe/s
functionally comparable to BSAFE SSL- slj.html

158

FOR INFORMATIONAL PURPOSES

Draft

C
SSL Baltimore KeyTools SSL Crypto toolkit for implementing SSL COTS http://www.baltimore.
Technologies documents; works in conjunction with com/keytools/ssl/index.
KeyTools Pro asp
SSL Certicom SSL Plus SDK for implementing SSL 2.0, SSL 3.0, COTS http://www.certicom.
and TLSv1.0 functionality in C desktop com/products/ssl_plus/
applications; supports two-way ssl_plus_desktop.html
authentication (client-server and
server-client), RSA and ECC SSL
ciphers, X.509 certificate handling,
and DSA certificate signing; fully
interoperable with Netscape
Navigator/Communicator, Microsoft
Internet Explorer SSL implementations
SSL Certicom SSL Plus for SDK for implementing SSL functionality COTS http://www.certicom.
Java in Java applications; comparable to com/products/ssl_plus/
SSL Plus (for C), plus supports Sun’s ssl_plus_java.html
Java Secure Sockets Extension (JSSE)
API and is fully interoperable with JDK
1.2and JDK 1.3
SSL OpenSSL OpenSSL Toolkit based on Eric A. Young’s and Open http://www.openssl.or
Project Tim J. Hudson’s SSLeay library, for Source | g
implementing SSLv2, SSLv3, and TLSv1
protocols in applications; includes
cryptographic library
SSL Stunnel.org Stunnel SSL tunneling of TCP and application- | Open http://www.stunnel.or
layer protocols not otherwise Source | g/, see also:
supported by SSL http://www-
106.ibm.com/develop
erworks/security/library
/s-
stun.html?dwzone=sec
urity
SSL hardware NCipher Corp. | nFast SSL Improves security and increases server | COTS http://www.ncipher.c
accelerator Ltd. accelerator throughput in applications using SSL, om/nfast/
such as secure Web servers,
authenticated access to intranets
and extranets, digital signatures, and
secure messaging. Several nCipher
cryptographic accelerators are FIPS
140-1 validated: nFast nF75KM 1C,
NF150KM 1C, nF300KM 1C, nFast
nF75CA 00, nF150CA 00, nF300CA 00,
nFast nF75KM 00, nF150KM 00, and
nF300KM 00; also nForce 400 SCSI and
nForce 150 SCSI; nForce 300 PCIl and
nForce 150 PCI; nForce 300 SCSI,
nForce, 150 SCSI, and nForce 75 SCSI;
and nForce 300, nForce 150, and
nForce 75.
SSL hardware Chrysalis-ITS Luna XL and Provides high-performance hardware- | COTS http://www.Chrysalis-
accelerator Ltd. XLR based key management and ITS.com/trusted_system

cryptographic acceleration for Web

s/luna_xl.htm

159

FOR INFORMATIONAL PURPOSES

Draft

servers that do SSL transaction
processing (the XLR is a 1U rack-mount
system). FIPS 140-1 validated

Digital signature Chrysalis-ITS Luna XP plus Provides hardware-accelerated COTS http://www.Chrysalis-
hardware engine Ltd. signing, secure key management, and ITS.com/trusted_system
signature validation for high-volume s/luna_XPplus.htm
transaction applications, such as
transaction coordinators and OCSP
(Online Certificate Status Protocol)
responders. FIPS 140-1 validated
Certificate CertCom CertValidator | OCSP repository and responder for COTS http://www.certco.co
validation and OCSP-based certificate validation m/certvalidator.shtml
CertValidator
Toolkit
Certificate KyberPass Validation OCSP-based certificate validation COTS http://www.kyberpass
validation TrustPlatform and digital signature validation .com/products/valida
tion_trustplatform.html
Certificate ValiCert Validation X.509 certificate validation COTS http://www.valicert.c
validation Authority middleware om/products/validatio
n_authority.html
Certificate Entrust X.509 For Microsoft Windows 32-bit COTS http://www.entrust.co
handling CygnaCom Certificate Operating Systems: API for m/entrustcygnacom/p
Path implementing X.509 certificate path roducts/index.htm
Development | development from a specified entity
Library to a trusted root. After generation by
the API, the certificate path is returned
to the API user for verification;
verification itself is performed by a
program outside of the APl and may
consist of signature verification,
certificate revocation list checks,
policy verification, and any other
verification desired.
Certificate RSA Security BSAFE Cert-C Certificate handling SDK of C software | COTS http://www.rsasecurity
handling libraries, sample code, and .com/products/bsafe/
documentation to ease integration certc.html
into C applications of PKI-based
cryptographic procedures for handling
X.509 certificates
Certificate RSA Security BSAFE Cert-J Certificate handling SDK of Java COTS http://www.rsasecurity
handling software libraries, sample code, and .com/products/bsafe/
documentation to ease integration certj.html
into Java applications of PKl-based
cryptographic procedures for handling
X.509 certificates
Single sign-on KyberPass Web Access Adds centralized Web access policy COTS http://www.kyberpass
(SSO), policy mgmt. TrustPlatform management, authentication and .com/products/web_a
authorization using OCSP and SSL to ccess.html
Web applications without a
developer toolkit or custom
development
SSO, policy mgmt. RSA Security ClearTrust Centralized Web access policy COTS http://www.rsasecurity

management, SSO, delegation,

.com/products/cleartr

160

FOR INFORMATIONAL PURPOSES

Draft

authorization, and self-audit ust/index.html
SSO, policy mgmt. BioNetrix Authenticatio | Authentication management COTS http://www.bionetrix.
n Suite 4.1 infrastructure (software) for unified com/products.html
management of combination of
advanced authentication
technologies, including smart cards,
tokens, and biometrics; implements
policy-based client-server, legacy,
and Web based applications
Kerberos CyberSafe TrustBroker TrustBroker Web Agent plus C, C++ and | COTS http://www.cybersafe
Web Java application development toolkit Itd.uk/products_solutio
Authenticatio | of functions for Web based ns_was.htm
n Solutions authentication using Kerberos
Kerberos CyberSafe Kerberos Adds Kerberos authentication to COTS http://www.cybersafe
Database Oracle and Sybase applications Itd.uk/products_solutio
Solutions ns_dss.htm
Pluggable PADL Software | pam_ldap Provides means for users of UNIX (incl. Open http://www.padl.com
authentication Pty Ltd Solaris) and Linux workstations to Source | /OSS/pam_ldap.html
module (PAM) authenticate against LDAP directories
and to change their passwords in the
directory; uses the PAM API defined in
OSF DCE RFC 86.0; supports SSL/TLS for
session encryption and strong
authentication; supports Netscape
Directory Server password policies and
directory-based access authorization
PAM Students at NI_PAM PAM-like pluggable authentication Open http://www.citi.umich.
University of modules to NT's GINA authentication Source | edu/projects/singlesign
Michigan module on/poster2.html;
http://www.citi.umich.
edu/u/itoi/demo19971
016/poster2.html
PAM A.G. Morgan Pluggable PAM implementation for Apache Web | Open http://pam.sourceforg
Authenticatio | server, comprises various Source | e.net/mod_auth_pam
n Module for authentication modules and programs /, see also:
Apache from various developers http://www.kernel.org
/pub/linux/libs/pam/m
odules.html
One-time password | RSA Security SecurelD ACE/Server enterprise authentication COTS http://www.rsasecurity
(OTP) product suite | server, ACE/Agent for Web, SecurelD .com/products/securid
tokens and smart cards, agents for /index.html
other types of systems, etc.
OTP Naval One-Time Implementation of the OTP standard GOTS http://www.inner.net/
Research Passwords In specified in |[ETF RFC 1938; derived in pub/opie/
Laboratory Everything part from the BSD UNIX and in part
(OPIE) from the Bellcore's S/Key, plus
enhancements developed by NRL
OTP Bellcore S/Key The granddaddy of RFC 1760- Open ftp://thumper.bellcore.
compliant OTP generators (for UNIX) Source | com/pub/nmh/
OTP Sandia S/Key MD4 Calculates MD4 digests for use by Open ftp://ftp.cs.sandia.gov
National calculator S/Key Source | /pub/firewall/skey/
Laboratory
OTP Harry jotp (Java Java applet implementation of S/Key | Open http://www.cs.umd.e

161

FOR INFORMATIONAL PURPOSES

Draft

Mantakos OTP OTP system Source | du/~harry/jotp/
Calculator)
OTP Markus Kuhn, OTPW: One OTP generator called newpass plus Open http://www.cl.cam.ac
Computer Time two verification routines — Source | .uk/~mgk25/otpw.html
Laboratory, Password otpw_prepare() and otpw_verify() —
University of Login that can be added to programs such
Cambridge Capability as login or ftpd on UNIX or Linux
systems
Biometrics Bioscrypt BIO-SDK SDK for implementing APIs to Bioscrypt COTS http://www.bioscrypt.
biometric devices and servers, and com/products/bio_sdk
implementing functions such as reader .shtml
configuration capability,
authentication, and biometric data
transfer. NSA approved Bioscrypt’s
Enterprise Reader, v.2.0.1.C1;
Enterprise for Windows NT version 2.1.3
was NIAP CC certified.
Role-Based Access NIST RBAC Adds RBAC into existing UNIX and GOTS http://csrc.nist.gov/rb
Control (RBAC) reference Windows NT operating systems ac/#software
implementati
on
Application firewall | Ubizen DMZ/Shield Validates incoming (from browsers) COTS http://www.ubizen.co
Web requests for conformance with m/c_products_services
security policy; prevents execution of /3_ubizen_dmzshield/c
known attacks or administrator- 331.html
configured unallowed Web requests
Application firewall | Sanctum, Inc. AppShield Web application firewall that COTS http://www.sanctumi
prevents the Web server from nc.com/solutions/apps
performing administrator-defined not hield/index.html
allowed actions requested by
browsers; also audits and notifies
administrator of attempted violations
Application firewall | eEye Digital SecurellS Application firewall for Microsoft IIS COTS http://www.eeye.com
Security Web server inspects all incoming /html/Products/Secure
requests from browsers and prevents lIS/index.html
any potentially damaging requests —
whether received in encrypted or
unencrypted transmissions - from being
responded to by the server. Uses
multiple security filters to inspect Web
traffic received by the server for buffer
overflows, parser evasions, directory
traversals, and other attacks, and
prevents server from responding to
such traffic
Secure execution NAI Labs Generic Prototype software wrapping Open http://www.nai.com/r
Software technology to increase the security Source | esearch/nailabs/secur
Wrappers and reliability of large software systems | (DARPA | e-
composed of standardized software - execution/wrappers-
components. Generic Software funded | darpa.asp
Wrappers intercept component R&D)

interactions and bind them with
additional functions that implement

162

FOR INFORMATIONAL PURPOSES

Draft

practical security (e.g., restricting,
filtering) and reliability (e.g.,
redundancy, crash data recovery)
policies

Code integrity Macrovision SafeWrap Wrapper to protect Windows-based Open http://www.macrovisi
application code from being Source | on.com/solutions/softw
tampered with or reverse-engineered are/safewrap.php3
COTS

Code integrity David Janus Tool for sandboxing untrusted Open http://www.cs.berkele

Wagner, Tal applications within a restricted Source | y.edu/~daw/janus/
Garfinkel execution environment on Linux
systems
Code integrity NCipher Secure Ncipher’s SEE is a tamper-resistant COTS http://www.ncipher.c
Execution hardware security module for om/technologies/see.h
Engine (SEE) executing sensitiveJava and C/C++ tml and
and programs securely. The CodeSafe http://www.ncipher.c
CodeSafe Developer Kit is an SDK of APIs to om/safebuilder/codes
Developer Kit | develop trusted Java or C/C++ afe.html
programs as NCipher Trusted Agents
that will be securely loaded and
executed on an nCipher hardware
security module (HSM).
Hash Bokler Software | HASHcipher SHA-1 cryptographic library for COTS http://www.bokler.co
Corporation Library Windows application developers m/hashcipher.html

Web content Appligent SecurSign Digital signature and 128-bit COTS http://www.appligent

signature/ encryption of Adobe PDF documents .com/newpages/secur

encryption by Web authors sign.html

Web content Lexign ProSigner Digital signature of Microsoft Word and | COTS http://www.lexign.co

signature/ Excel documents and Adobe PDF m/products/lexign_pro

encryption documents by Web authors signer.htm

Web content Appligent APCrypt Server-based command-line applying | COTS http://www.appligent

signature/ standard Acrobat encryption to PDF .com/newpages/apcr

encryption documents ypt.html

Web content Appligent DateD 2.0 Plug-in for Adobe Acrobat that adds COTS http://www.appligent

time/date stamp dynamic date and time stamps or .com/newpages/date
static messages to PDF documents d.html

Web content IDRSI CHX-I Forces use of client-side SSL and 128- COTS http://www.idrci.net/i

security filter SDK Developer Kit | bit encryption on the server-side SSL. drci_products.htm

1.9 Implements application firewall
actions on multiple WildFlag presences
and lists WildFlag in the algorithm.
Performs logical operations on multiple
wilds (AND/OR). Provides packet
payload control with insert and
replace actions. Supports multiple
pseudo wild possibilities: Character,
String, and Remote. Implements
optimized redirection service.

Web content OmniSecure HTTProtect Based on VP Disk Pro as the underlying | COTS http://www.omnisecur

integrity protection
(copy and
defacement)

core technology, HTTProtect comes
with customized configuration,
streamlined installation scripts, and
Web-based GUI designed specifically

http://www.omnisecur
e.com/httprotect.html

163

FOR INFORMATIONAL PURPOSES

Draft

to secure Web contents, CGl scripts,
and data collected from on-line users
via the Web.

Web content Odyssey WIGIL Monitors Websites for changes. If a COTS http://www.odysseyte
integrity protection | Technologies modification is detected, it alerts the c.com/Products/Wigil.
(copy and administrator and automatically html
defacement) republishes the original (non tampered

v ersion) of the page.
Web content Odyssey AssurePage Comprises AssurePage Server and COTS http://www.odysseyte
integrity protection | Technologies AssurePage Viewer, which enable c.com/Products/Assure
(copy and Web content developers to add end- Page.html
defacement) user authentication and integrity

checking using Public Key

Infrastructure (PKI) digital signature of

Web content to prove to users that

the content they view is in fact valid

and has not been tampered with
Web content Andreas Wulf HTML Guard Encrypts HTML source code, and Open http://www.aw-
integrity protection | Software disables the right mouse button of Source | soft.com/htmliguard.ht
(copy and Windows PCs and the text selection mi
defacement) and print functions of browsers that

connect to the Web server, to inhibit

copying (and defacement) of Web

content
Web content Andreas Wulf WebExe Converts a single HTML page or group | Open http://www.aw-
integrity protection | Software of pages into a single, self-running EXE Source | soft.com/webexe.html
(copy and file with an integrated browser,
defacement) providing the developer full control of

the browser's functionality, including

the appearance of menu bars,

printing, and copying
Web content Authentica NetRecall Toolset for controling how Web COTS http://www.authentic
integrity protection content can be used afteritis a.com/products/netre
(copy and downloaded/accessed by users; call/how_it_works.asp
defacement) includes Authentica policy server for

managing and storing protection

policies, distributing keys, managing

client connections, and logging all

Web content accesses; Web viewer

client plug-in enables viewing of

protected content; Content Manager

supports Web author encryption of

content, establishment of access

policies, and tracking of access of

protected content; Dynamic

Protection Module for protecting Web

content dynamically generated by

the Web server
Web content Authentica PageRecall Implements page-level control over COTS http://www.authentic

integrity protection
(copy and
defacement)

documents during and after delivery
to recipients, controlling who can read
the document, which pages they can
read, when they can read the

a.com/products/page
recall.asp

164

FOR INFORMATIONAL PURPOSES

Draft

document, and when read-access
should expire. Centrally manages
viewing rights and expiration, even
after document distribution. Enables
document creator to prohibit printing
of all or part of the document, enables
adding of a watermark to printable
pages, and enables the "copy/paste”
and "save as" functions to be disabled
for the document.

Web content ArtistScope CopySafe For Web sites on Windows NT, provides | COTS http://www.artistscop
integrity protection Web image encryption and a browser e.net/copysafe/index.
(copy and plugin to protect and restrict usage, html
defacement) and prevent copying
Encryption of data | F-Secure F-Secure Encryption of files, not the entire hard COTS http://www.f-
at rest Security FileCrypto for drive; centralized key management secure.com/products/f
Solutions Desktops and | and recovery by administrator using F- ilecrypto/desktop.shtml
Laptops — Secure Policy Manager.
Kernel Mode Cryptographic Driver Version 1: NSA
approved for AES and 3-DES;
Cryptographic Service Provider DLL
Version 1.1: NSA approved for 3-DES.
Encryption of data | F-Secure F-Secure Central management of file and COTS http://www.f-
at rest Security Policy network encryption, key secure.com/products/
Solutions Manager management, antivirus protection, policy-man/
and other enterprise security functions
Encryption of data | Protegrity Secure.Data Data item-level encryption for COTS http://www.protegrity.
atrest database entries, with data access com/The_Secure.Data
policy management _Suite.html
Encryption of data | Application DbEncrypt for | Encrypts rows and columns in the COTS http://www.appsecin
at rest Security Inc. Oracle and database c.com/corporate/prot
Microsoft SQL ect.html
Server
Encryption of data | ERUCES Data ERUCES High-volume database encryption COTS http://www.eruces.co
at rest Security Tricryption and automated key management m/default.asp?-
Engine system, enabling centralized control =Products
Database over encryption keys used enterprise
Edition wide
Encryption of data | ERUCES Data ERUCES High-volume file encryption and COTS http://www.eruces.co
at rest Security Tricryption automated key management system, m/default.asp?-
Engine Key enabling centralized control over =Products
Host Edition encryption keys used enterprise wide
Encrypted data XYPRO XYGATE File Encryption of unstructured data files COTS http://www.xypro.co
transfer Encryption before transfer. Operates on Window, m/products/xygatefe.
UNIX, Linux, IBM OS390, and Himalaya html
(Tandem/NSK) systems; key
management through XYGATE KM;
XYCRYPT 3.0 (used in all XYPRO
encryption products) NSA approved
and NIST FIPS 140 certified for 3-DES;
NIST FIPS 140 certified for DSA and
SHAL.
Encrypted data Securit-e-doc Securit-e-doc | Provides Web server-based one-time COTS http://securit-e-

165

FOR INFORMATIONAL PURPOSES

Draft

transfer

use symmetric encryption (using
Securit-e-doc’s Secure Information
Transport Technology [SITT]) to
implement encrypted filesystem
(called S-Doc) with full key
management on Web server. Enables
user access to encrypted files via
interactive HTML interface from
browser to server. SITT Cryptosystem
Version 3.0: NSA approved for AES and
3-DES.

doc.com/product/pro.
htm

Public Key Enabling
(PKE) SDK

Certicom

Security
Builder

Cryptography toolkit including APIs
and C and Java components for
integrating encryption, digital
signatures, and related security
mechanisms into applications.
Government Solutions Edition
Version10: NSA approved for AES and
3-DES.

COTS

http://www.certicom.
com/products/security
builder/securitybuilder

_feat.html

PKE SDK

RSA Security

BSAFE Crypto-
C Version 5.2.1

PKE toolkit of cryptographic
components and APIs in C, including
DSA, AES, 3-DES, SHA-1, PKCS#11, and
numerous other cryptographic and
key management functions optimized
for Intel Pentium and Sun SPARC
platforms. NSA approved for 3-DES,
FIPS 140-1 and 140-2 certified.

COTS

http://www.rsasecurity
.com/products/bsafe/
cryptoc.html

PKE SDK

RSA Security

BSAFE Crypto-
J

PKE toolkit and APIs in Java,
implementing the same functions as
those provided in Crypto-C

COTS

http://www.rsasecurity
.com/products/bsafe/
cryptoj.html

PKE SDK

Baltimore
Technologies

KeyTools Pro

PKE toolkit, in C++ and Java versions,
including APIs and components for
cryptographic and certificate
handling, CRL distribution and
checking, OCSP, LDAP, central policy
control, smart card support, and
cryptographic algorithms (including
DSA, 3-DES, and SHA1). Uses any
JCE/JCA (Java Cryptography
Extension/Java Cryptography
Architecture) compliant cryptographic
provider (including Sun’s native JCE
provider) or Baltimore's own JCE
provider (KeyTools Pro)

COTS

http://www.baltimore.
com/keytools/pro/inde
x.asp

PKE SDK

Certicom

Trustpoint/C

SDK for adding PKI functionality to C
and C++ server applications on
Windows, Solaris, and Linux; includes
support for X.509v3 certificate and
CRL handling, PKCS#10,
cryptographic algorithms (including
DSA, 3DES), S/MIMEv2, and
interoperability with several vendors'
PKls and CAs

COTS

http://www.certicom.
com/products/trustpoi
nt_toolkits/trustpoint_to
ol_c.html

166

FOR INFORMATIONAL PURPOSES

Draft

PKE SDK Certicom Trustpoint/Ja SDK for adding PKI functionality to COTS http://www.certicom.
va Java server applications on Windows, com/products/trustpoi
Solaris, and Linux; functions nt_toolkits/trustpoint_to
comparable to those in Trustpoint/C ol_java.html
PKE SDK MegaSign Application SDK for PKI-enabling new or legacy COTS https://www.megasig
Integration applications; includes C and C++ APIs, n.nl/onsite/datasheets
Toolkit and library functions for X.509v3 /toolkit/
certificate registration and lifecycle
management (including CRL
handling), cryptographic interfaces,
LDAP and X.500 directory interfaces,
HTTP support
General crypto SDK | Bokler Software | TDEScipher Symmetric cryptography toolkit for
(symmetric and PK) | Corporation Library Windows application developers
NSA approved for COTS http://www.
3-DES; NIST FIPS PUB bokler.com/td
46-3 compliant escipher.html
General crypto SDK | Information ISC Libraries of linkable cryptographic COTS http://www.infoseccor
(symmetric and PK) | Security Cryptographi | modules for adding encryption, digital p.com/products/cdks.
Corporation c signatures, and message htm
Development | authentication to applications, NSA
Kits approved for 3-DES
General crypto SDK [XYPRO XYGATE SDK comprising the XYCRYPT library of | COTS http://www.xypro.co
(symmetric and PK) Encryption cryptographic mechanisms for m/products/xygateen
Software encryption-enabling applications; cript.html
Developer Kit | XYCRYPT 3.0 (used in all XYPRO
encryption products). NSA approved
and NIST FIPS 140 certified for 3-DES;
NIST FIPS 140 certified for DSA and
SHAL.
Pseudorandom Secure Entropy System service and library for Open http://www.securesw.
number generator Software Gathering providing secure random numbers on | Source | com/egads.php
and Windows and UNIX systems; provides
Distribution the same functionality on these
System platforms that /dev/random and
(EGADS) /dev/urandom provide on Linux
partly funded by DARPA CHATS
program and evolved from DARPA-
funded Yarrow pseudo-random
number generator)
Pseudorandom Brian Warner Entropy Perl substitute for /dev/random on Open http://egd.sourceforge
number generator Gathering systems that do not have a Source | .net/
Daemon convenient source of random bits
(EGD)
Web security Wipro WebSecure Enterprise Web security infrastructure: COTS http://www.wipro.co
infrastructure Technologies implements authentication (SSO), m/wiprowebsecure/pr
authorization, session management, oducts/overview.htm
encryption, non repudiation, audit,
and automated security incident
response
Software TogetherSoft Control Application development COTS http://www.togethers
development Center environment and toolkit oft.com/products/cont

environment

rolcenter/index.jsp

167

FOR INFORMATIONAL PURPOSES

Draft

Software Rational eXtended Application development COTS http://www.rational.c
development Development | environment and toolkit om/products/xde/ind
environment Environment ex.jsp
(XDE)
Java security The Jakarta Jakarta Servlet-based framework for Open http://jakarta.apache
Project Turbine developing secure Java applications | Source | .org/turbine/ See also
based on a single-entry point program http://www.javauserg
model roup.at/events/turbin
e.pdf
Common gateway | Stanford cgi-wrap CGil security wrapper that performs Open http://www.slac.stanf
interface (CGl) University simple checking on input to CGl Source | ord.edu/slac/www/to
security Linear scripts, imposes resource-usage limits ol/cgi-wrap/doc/
Accelerator on processes created by CGl scripts,
Center and kills stalled processes
CGil security Nathan CGIWrap Gateway program that enables more | Open http://cgiwrap.unixtoo
Neulinger secure user access to CGl programs on | Source | Is.org/
an HTTPd server than provided by the
server itself by making certain that a
CGl script runs with the permissions of
the user who installed it, not with the
permissions of the server. (Use this
wrapper with caution: if an attacker
manages to execute commands
under a valid user's username, he can
delete or modify all of that user's data
and indeed the user’s account itself.)
CGl security Steven Grimm | Uncgi Front end for processing queries and Open http://www.midwinter
forms from the Web; decodes all form Source | .com/~koreth/uncgi.ht
fields and inserts them into mi
environment variables for easy perusal
by a C program (Perl script, etc.) then
executes whatever other program is
specified by that program/script.
Eliminates the need to write or find
and use routines to translate URL-
encoded values in HTML form fields
into a format understandable by the
program/script processing those data;
no need to write or use different
routines for handling forms received
via GET versus POST.
Perl security mod_perl Apache::Taint | Applies Perl "tainting" rules to HTML Open http://www.modperlc
Request output Source | ookbook.org/code.htm
|
Python security Unknown PyChecker Source code error scanning for Python | Open http://pychecker.sourc
programs Source | eforge.net
C & C++ security Todd Austin, Safe C Optimizing C-to-C compiler, which Open http://www.cs.wisc.ed
Wisconsin Compiler implements the extended pointer and | Source | u/~austin/scc.html
Multiscalar array access semantics needed to
Group, provide efficient, reliable, and
University of immediate detection of memory
Wisconsin- access errors
Madison

168

FOR INFORMATIONAL PURPOSES

Draft

C & C++ security

Greg McGary

Bounds
checking
extensions

Add fine-grained bounds checking to
GCC's C and C++ compiler front ends

Open
Source

http://gcc.gnu.org/pro
jects/bp/main.html

Buffer overflow
prevention

AUSCERT

overflow_wra
pper.c

Wrapper for limiting exploitation of
programs that have command-line
argument buffer overflow
vulnerabilities

Open
Source

ftp://ftp.auscert.org.au
/pub/auscert/tools/ov
erflow_wrapper.c

Buffer overflow
prevention

Paul Szabo

sec_wrapper.
c

Wrapper (UNIX setuid program) for
preventing command-line or
environment variable buffer overflow
by checking the lengths of arguments
or environment variables (does not
check values of those arguments or
environment variables)

Open
Source

http://www.maths.usy
d.edu.au:8000/u/psz/
du/sec_wrapper.c

Buffer overflow
prevention

Immunix.org

StackGuard

Memory integrity checking
enhancementto GCC C/C++
compiler that augments generalized
bounds checking to detect and
prevent buffer overflows on stacks
(but not on heaps) while requiring no
changes to program source code.
When compiled into a program,
StackGuard detects in real time
attempts to exploit stack smashing
vulnerabilities, raises an intrusion alert,
and halts the program before the
exploit can be accomplished.

Open
Source

http://immunix.org/sta
ckguard.html

Buffer overflow
prevention

RST Software
Security Group

ITS4

Helps automate source code review
for security by statically scanning C
and C++ source code for potential
security vulnerabilities. It is a
command-line tool that works across
UNIX systems and on Windows
platforms running CygWin.

Open
Source

http://www.rstcorp.co
m/its4

Buffer overflow
prevention

Bell Labs

Libsafe

Middleware software layer that
intercepts all function calls made to
library functions that are known to be
vulnerable to buffer overflow attacks.
Operates on executing programs, so
does not require access to source
code of defective programs,
recompilation, or off-line processing of
binaries. For each vulnerable call,
Libsafe substitutes a safe version of the
corresponding function that
implements the original functionality,
but in a manner that ensures that any
buffer overflows are constrained within
the current stack frame, thus
preventing attackers from smashing
(overwriting) the return address and
hijacking control flow of the running
program.

Open
Source

http://www.bell-
labs.com/org/11356/lib
safe.html

169

FOR INFORMATIONAL PURPOSES

Draft

Extensible Markup IBM XML Security Provides digital signature, encryption, COTS http://www.alphawor
Language (XML) alphaworks Suite and access control for XML ks.ibm.com/tech/xmise
security documents curitysuite
XML security Aleksey Sanin XMLSec XML security library in C for Open http://www.aleksey.c
implementing standards-based XML Source | om/xmlsec/
SignatureXML Encryption, Canonical,
and Exclusive Canonical XML
XML security Baltimore KeyTools XML | Crypto toolkit for securing XML COTS http://www.baltimore.
Technologies documents; works in conjunction with com/keytools/xml/inde
KeyTools Pro x.asp
XML security Westbridge XML Enforces RBAC access control rules for http://www.westbridg
Application XML objects etech.com/appfirewal
Firewall [.html
Security code Novell mutual.c Demonstrates mutual authentication COTS http://developer.nov
sample (illustrative) | Corporration with an LDAP server via SSL ell.com/ndk/doc/sam
plecode/cldap_sampl
e/cldap_sample/mutu
al.c.html
Common objection | Adiron ORBAsec SL3 Middleware implementation of COTS http://www.adiron.co
request broker CORBA standard CORBA Common Secure m/ORBAsec3.html
architecture Interoperability Version 2 (CSIv2)
(CORBA) security protocol, with APIs to credentials-
handling and SSL/TLS functionality
CORBA security Object MICOSec Middleware implementation of COTS http://www.objectsec
Security standard CORBA Security Services urity.com/micosec.html
(CORBASec) Level 2 Version 1.7, based
on the MICO Object Request Broker
(ORB) and standard SSL
Browser input WhiteHat WhiteHat Browser security toolset that adds a COTS http://www.whitehats
validation [see Security Arsenal series of input validations with ec.com/html/wharsen
note] automatic correction of HTML forms to al.html
eliminate dangerous input; also adds
logging of security-relevant events in
the browser
Browser digital RSA Security Keon e-Sign Browser plug-in for digital signature of COTS http://www.rsasecurity
sighature Web forms .com/products/keon/d
atasheets/dskeonesign
.html
Browser digital Netscape Form Signing Digital signature of Web forms for COTS http://developer.nets
sighature Netscape browsers cape.com/tech/securi
ty/formsign/formsign.ht
ml
Browser digital Lexign Web Signer Digital signature of Web forms COTS http://www.lexign.co
signature m/products/lexign_we
bsigner.htm
PKE of legacy Celocom eAccess Tool for PKE of existing applications COTS http://www.celocom.
applications Server (including legacy applications) with com/web/celo/d.asp

minimal reprogramming of those
applications. The eAccess Server is an
SSL/TLS gateway with extended PKI
capabilities that extends PKI services
(strong encryption, revocation control
and PKl-based access control) to

?2p=682

170

FOR INFORMATIONAL PURPOSES

Draft

Web portals and existing legacy
client-server applications. The eAccess
Server provides a platform for
establishing a generic SSL/TLS server-
side tunnel that can then be applied
to any static TCP-protocol, such as
HTTP, Telnet, POP3, and ICA, used
between clients and servers.

NOTE: Use browser input validation only in conjunction with server input validation,
never as a substitute for server security tools. Browser input validation can be useful as a
first cut, to reduce the number of possible violations passed to the server. The server

must validate all browser input regardless, in case browser input validation was bypassed
or the data output by the browser was tampered with en route to the server.

171
FOR INFORMATIONAL PURPOSES

Draft

APPENDIX D: PROGRAMMING LANGUAGE SECURITY
D.1C AND C++

D.1.1 GENERAL RULESOF THUMB FOR SAFE C PROGRAMMING
1. Check dl functionsfor vaid returns.
2. Veify thevdidity of dl environment varigbles before using them.
3. Set the PATH environment varigble to a known value.
4. Usefull (not relative) pathnamesin dl commands.

5. On UNIX systems, do not useset ui d onawhole program. Useset ui d r oot only for
the smdlest part of the program that needs to have root privilege, and then as soon as that part
of the program has completed its root- privileged task, set ui d back to user.

6. Strip dl binaries.
7. Logdl usernames, file accesses, and related items.
8. Avoid common semantic errors and typos, such as using “=" when you meen “==",

9. Cdoesnot implicitly provide exception handling. Therefore, write your programsto explicitly
handle critica errors. Do not rely on the programming language to do so.

D.1.1.1 Type Declaration and Checking

Declare types drictly. Whenever possible, use enumto define enumerated values, do not just define a
character type or integer type (char or int) with specia vadues. Thisis particularly true for vauesin
switch statements, whereby the compiler can be used to determine whether al legd values have been
covered.

When avaue cannot be negetive, use unsigned types if possible. Be aware that when a signed char
with its high bit st is saved in an integer, the result will be a negative number; this may result in an
exploitable vulnerability. Unless absolutely impossible, when deding with character datathat may have
values greater than 127 (0x7f), use unsigned char instead of char or signed char for buffers, pointers,
and casts.

Vdidatedl input. Check dl input arguments for vaidity — not just the C type, but adso program:
specific type information. For example, if an input argument is supposed to be an executable file, check
that theinput file is an executable and that the user has permission to run the file,

172
FOR INFORMATIONAL PURPOSES

Draft

D.1.1.2Memory Allocation

C isunable to detect and prevent improper memory alocation. To avoid buffer overflows, developers
must do their own memory management (eg.,usng mal | oc(),al l oc(),free(),new,and
del et e). Errorsin memory management may result in security vulnerabilities. Mogt significant,
programs that erroneoudy free memory that should not be freed (e.g., because it has dready been
freed) may immediately crash or be exploited by an attacker to cause arbitrary code to be executed.
Using theincorrect cdl in C++ (eg., mixing newand mal | oc (')) may have amilar results.

There are various tools available to address this problem (such as Electric Fence and Valgrind; see
Appendix C). If unused memory is not freed for example, the unused memory may accumulate until the
program stops working.

Mogt C programs aso tend to set arbitrary limits on array szes. Code that does not remember array
bounds will typicaly crash. However, if asmart hacker corrupts the system’s stack, he may useit to
execute functions such assy st eminstead of crashing (see Section D.1.2.1).

D.1.2 BUFFER OVERFLOW IN C AND C++

One of the most common security vulnerabilities, buffer overflows run rampant in many of today’s
goplications. Surprisingly, this problem is not new, and in many cases it has arisen in the same operating
systems and gpplications for decades (such as some UNIX variants). The frequency with which this
type of problem is being discovered and exploited in misson critica software has grown significantly
within the past decade. Thisis not because the problems did not exist, but because this type of attack
required a higher level of sophidtication than the average attacker possessed. Today, with cookie-cutter
ingtructions on how to take advantage of these problems, and the shear increase in the number of
attackers, minima expertiseis required.

A buffer overflow occurs when a piece of datais copied into alocation in memory, one not large
enough to hold the piece of data. The copying succeeds, however, and memory outside of the boundary
of the target memory is written over. Variablesin aprogram are dlocated either on the programs stack
or on the programs hegp. Therefore, it is common to hear the terms stack overflow and heap
overflow. Both types of overflows are possible to exploit, but the stack overflow isin many cases much
easier.

Mogt buffer overflow problemsin C and C++ originate in the standard C library, specificdly in string
operations that do no argument checking. Even if the application itsdf is written in another language that
is not vulnerable to buffer overflows, because so many runtime library routines and Application Program
Interfaces (APIS) used by most applications are likely to be written in C or C++, be careful to select
only those routinesAPIs that are not likely to cause buffer overflows.

Also, explicitly write dl routinesin the application to automaticaly compare the Size of each input data
string with the Sze of the buffer dlocated to recaeive that string. If received data exceed the size of the
adlocated buffer, write the routine to

173
FOR INFORMATIONAL PURPOSES

Draft

Truncate or rgect any data that exceeds the sze of the buffer or
Halt the operation and/or

Return awarning message to the user.

D.1.2.1 Stack Smashing Vulnerabilities

Stack smashing is the most dangerous buffer overflow attack, particularly if the stack being attacked is
running in privileged mode. The best way to avoid stack smashing is to implement nonexecutable stacks.
Thiswill prevent an attacker from being able to write and execute maicious code on the program stack.
Severd operating systems have nonexecutable stack patches, including Solaris. Other operating systems
are inherently designed to alow only nonexecutable stacks.

Nonexecutable stacks can be defeated in programs that contain both a stack overflow and a heap
overflow, because the stack overflow can be exploited to cause the program to jump to maicious code
placed in the heap.

NOTE: Nonexecutable stacks may introduce some performance degradation. In
pointer-intensive programs and other realtime programs where speed is critical,
use of nonexecutabl e stacks may hamper adequate performance. When writing
such programs, if you must use executable stacks, be particularly careful to avoid
using buffer-overflow inducing calls, functions, and constructs.

D.1.2.2 Lack of Automatic Bounds Checking

C and C++ were designed intentiondly not to do bounds checking automaticdly. Thisis because
bounds checking adds processing overhead, and C and C++ were designed to favor efficiency over
other congderation of language design. Asaresult, C programmers must compensate by writing their
programsto explicitly perform bounds checking and by avoiding the use of unsafe C/C++ calsand
functions.

With the increase in CPU performance in modern computers, argument and bounds checking no longer
represents a drain on program efficiency. Indeed, any processing overhead these checks add to
program execution will probably be undetectable.

D.1.2.3 Safe Alternativesto Dangerous Calls

Instead of using the following dangerous calls, functions, and library routines, use their safe dternatives,
(shownin Table D-1). Most of these calls are dangerous because they can cause buffer overflows. In
some cases, they may introduce other vulnerabilities.

NOTE: If thereis no safe alternative to a dangerous call, either avoid the call
completely and implement the desired functionality in another way; or be sure to

174
FOR INFORMATIONAL PURPOSES

Draft

explicitly and correctly allocate adequate-sized buffers, and to include code in
your program to perform bounds checking when using such calls.

TableD.1. Safe Alternatives to Dangerous Calls

Dangerous Calls

Safe Alternatives

gets() fgets(buf, size, stdin), making sure allocated buffer is
at least as big as specified

Scanf f get ¢, checking buffer boundaries when using f get ¢ in a loop

sscanf () or

f scanf ()

vscanf () Use precision specifiers, and avoid “%” in formatting or

vsscanf ()

vfscanf () Do your own parsing, and avoid “%” in formatting
NOTE: Do not use any call in the scanf () family to send data to
a string without controlling maximum length.

chnod() f chnod()

chown() f chown()

chgrp() f chnod() or
f chown()

strcpy() st rncpy(), making sure allocated buffer is at least as big as
specified. When using strncpy(), you must explicitly NULL to
terminate the string, because NULL termination will not occur if
the length of the source buffer is larger than or equal to the size
specified.

Wscopy

_mbscpy

strcat () strncat (), only if absolutely necessary, and with caution

W cat Do not use.

_nmbsncat

wcsncat

_nbsncat

sprintf() snprintf (), if supported and a safe implementation, and
making sure allocated buffer is at least as big as specified or
glib library alternative: g_snprintf () or
Java alternatives: ji o_fprintf, jio_snprintf,
jio_vsnprintf or
use precision specifiers

Vsprintf Do not use.

swprintf

system() exec()

Or place back slashes before any characters that have special
meaning to the system shell before calling syst en()

175
FOR INFORMATIONAL PURPOSES

Draft

shel | () Do not use.
exec*p
exec**
CopyMenory Do not use.

getopt()fam |y

Susceptible to overflows of internal static buffers. Always set the
threshold for the length of inputs to be passed to get opt () and
always do the necessary bounds checking.

NOTE: Even some safe versions of systemcalls (e.g., st r ncpy() instead of

st rcpy()) arenot completely safe. They sometimes leave strings unterminated
or encourage subtle off-by-one bugs. Refer to David A. Wheeler’s Secure UNIX
Programming HOWTO, “ 5.2 Library Solutionsin C/C++,” for specific examples
of such problems.

In addition, we offer some caveats when using the calls found in Table D-2.

Table D-2. Safe Alter natives and Caveats

Dangerous Calls

Safe Alternatives

streadd() Allocate output buffer four (4) times larger than input buffer.

strecpy()

getenv() Never assume the environment variable has a particular length.

real pat h() Allocate results buffer of MAXPATHLEN and make sure the
length of the pathname to be input does not exceed
MAXPATHLEN.

strtrns() Manually check that the destination buffer is at least as big as the
source string

Sysl og Do not use to log application events (it does not check file system
environment variables for validity). Also truncate all string inputs to
reasonable length before passing them to sysl og.

Get opt Susceptible to overflows of internal static buffers.

get opt _| ong

get pass Truncate all string inputs to reasonable length before passing
them to get opt , get opt _| ong or get pass — and do
necessary bounds checking

Getc Susceptible to overflows of internal static buffers

fgetc()

get pass() Truncate all string inputs to reasonable length before passing

get char () them to get opt , get opt _| ong or get pass

r ead
Also, check buffer boundaries if using get ¢ or read in a loop —
and do necessary bounds checking.

Bcopy Make sure that the allocated buffer is at least as big as specified.

mencpy

strccpy

st rcadd

176
FOR INFORMATIONAL PURPOSES

Draft

streadd()

strecpy()

vsnpri nt f

strlen() Use only if you can ensure that there will be a terminating NIL
character.

get wd(3) Send a buffer at least PATH MAX bytes in length

popen() Place back slashes before any characters that have special
meaning to the system shell before calling popen() .

NOTE: C/C++ get s() and stack overflow issues are present not only in
UNIX, but also in Windows and MacOS There have also been instances in which
overflows have occurred due to unsafe usage of the mencpy () function. This
may occur when the length specified to mencpy () function can be manipulated
by an outside source. For this reason, always ensure that the length is not larger
than the memory structure being copied into.

D.1.2.4 Toolsfor Detecting and Preventing Buffer Overflows

Two kinds of scanning tools have proven effective in helping to find and remove buffer overflows from
C and C++ code. They are static tools, in which the code is considered but never run, and dynamic
tools, in which the code is executed to determine its behavior.

Many datic tools do little more than automate the gr ep commands to locate instances of problemétic
functionsin source code. Thus help extract from alarge program of tens or hundreds of thousands of
lines of code the few hundred potentia problems.

More effective Satic tools use data flow information to determine which variables affect which other
vaiables, helping zero in on the truly problematic functions (versus the fase positives) initidly identified
withagr e p-basad tool. The problem with the data flow gpproach isthat it sometimes failsto flag cdls
that could cause problems.

Dynamic tools look for potentid problemsin code asit runs. One dynamic analyss approach is fault
injection, in which the program is indrumented in away tha alows the tester to experiment with it,
running what if scenarios againgt the code and waiching the results. FIST isafault injection tool that has
been used to locate potentia buffer overflows (see Appendix C).

Some combination of dynamic and static analysesis probably best for flagging buffer overflow
vulnerabilitiesin code. Research is being done to determine which combination is mogt effective.

Use acompiler (or compiler add-on tool) that performs array bounds checking for C programs, such as
the tool available for GNU C Compiler (GCC). Use of such acompile-timetool will prevent dl buffer
overflows, including al overflows in hegps and stacks.

177
FOR INFORMATIONAL PURPOSES

Draft

Stackguard, ITS4, and Libsafe (see Appendix C) are just three open source developer tools that have
proven very useful for detecting and preventing buffer overflows. Rationa’ s Purify (see Appendix C) is
acommerciad memory integrity checking tool that is designed to protect againgt both stack and hegp
overflows. However, unlike its open source counterparts, Purify has been observed to make a
sgnificant performance impact on the programs it protects, which may make its use in production code
impractical.

Whatever tools are used, the best gpproach to iminating buffer overflow vulnerabilitiesis to protect the
entire operating system with those tools. That action will ensure that not only the gpplication program
but dso dl the libraries called by it are protected.

D.1.2.5 Additional Solutionsto Buffer Overflow

For additiona specific solutionsto C and C++ buffer overflow, please refer to David A. Whedler,
Secure Programming for Linux and UNIX HOWTO, “5.2 Library Solutionsin C/C++” and “5.3
Compilation Solutionsin C/C++” (see Appendix B). Also refer to Appendix C for specific buffer
overflow detection and prevention tools.

D.2VISUAL BASIC

Microsoft needs to publish security patchesto Visud Basic fairly frequently. We strongly recommend
that you use Javaingtead of Visud Badc.

D.3JAVA

NOTE: Extensive information about Java’sinherent security featuresis available
in books and on the Web. Several references to such information appear in
Appendix B.

Java code intended for use on the client runsin a different environment, under a different trust mode,
than does code on the server. There are common requirements, however, whether the Java code runs
on the client or server. Input from untrusted sources should aways be checked and filtered. Java code
that inherits methods from parents, interfaces, or parents' interfaces dso inherits vulnerabilities in those
inherited methods. For thisreason, it is critica that the developer use inheritance with caution.

The following are some specific guidelines for secure Java devel opment:

Use a class loader that will enforce accessibility modifiers at run time. The JavaVirtud
Machine (VM) cannot be relied on to enforce the accessibility modifiers (such as private ones)
in gpplications (versus gpplets) at run time. Run time enforcement of accessibility modifiers
depends on which class loader is used to load the class requesting the access; a class |oaded
with atrusted dlass |oader (including the null and primordid class loader), will return TRUE after
an access check. By contrast, applets (e.g., appletviewer or browser) will not be loaded by a
trusted or null class loader.

178
FOR INFORMATIONAL PURPOSES

Draft

Do not depend on initialization to prevent allocation of uninitialized objects.

Do not rely on package scope for security. Although afew classes (e.g., javalang) are closed
by default, and some JVMs allow developersto close other packages, the mgority of Java
classes are not closed. They enable atackers to introduce new classes insde existing packages
and use the new classes to access resources that were previoudy protected.

Minimize privileges and signed code. Minimize or avoid atogether the use of specid
permissions and sgned code. Strive to write programs that need only the permissions provided
by the Java sandbox. Specific guiddines on use of privileged code follow.

Place all signed code in a single archive file. To protect Sgned code from a mix-and-meatch
attack (in which the attacker congtructs a new applet or library that links existing sgned classes
with new mdicious classes, or links signed classes that are not intended to be used together),
use asingle archive to store signed code. Note that existing code-Sgning systems provide
inadequate protection againg mix-and-match attacks. Use of a angle archive will reduce their
likelihood.

Globally protect packages. Whenever possible, globaly protect a package against package-
insertion and package- access by an untrusted code.

Support object for sensitive information: To ensure that sengtive informeation is explicitly
cleared as soon as possible, store the sengtive information such as credentials in mutable data
types, such as arrays, rather than in immutable objects such as strings. Do not rely on the Java
platform’s automatic garbage collection, which does not guarantee timely reclametion of
memory. Clearing sengitive information as soon as possible makes it much harder for a hacker
to target a heap-ingpection attack from outside the virtua machine. Follow this caution: Do not
embed secrets (cryptographic keys, passwords, or agorithm) directly in code or data. Hogtile
JVMs can be used to view the secrets stored in code and data. Obfuscation should not be used
as a security approach.

Never return a reference to an internal array that contains sensitive data: Evenif an array
contains immutable objects (e.g., Srings), acopy — and not the origind — should be returned,
to prevent the caling code from changing the strings contained in the array. Instead of passing
back the array, make acopy of the array and return that copy.

Reduce the scope of methods and fields: Determine whether package- private members could
be made private, whether protected members could be made package-private/private, and o
on.

Make methods private. Unlessthere is agood reason to make methods public, make them
private. If amethod must be public, the reason should be documented, and the method should
include mechanisms to protect itsdf from the potentid effects of tainted data it may receive.

179
FOR INFORMATIONAL PURPOSES

Draft

Scrutinize native methods: Examine dl native methods for what they return, what they accept
as parameters, whether they bypass security checks, whether they are public or private, and
whether they contain method calls that bypass package boundaries (and thus package
protection).

Do not useinner classes: When trandated into byte code, inner classes become accessible to
any cassin the package. Furthermore, the enclosing class s private fields become non private to
permit access by the inner class.

Do not use public fields or variables. Declare dl fields and variables as private, and provide
accessors (which can perform security checks) to them to limit their accessibility. In addition,
include a security check in any public method that has access to and/or modifies any sendtive
internd states, or both.

Do not use static field variables. Static field variables are attached to the classitsdf, not to a
classingtance. A class can belocated by any other class, thus making it possible for other
classesto locate satic fidld variables. That capability makes the Setic field variable difficult to
secure.

Make objects immutable: If possible, make objects immutable. Otherwise, make them
clonable and return copies. Objects such as arrays, vectors, and hash tables are not immutable.
That means the calling code can change the contents of these objects, with adverse security
implications. Immutable objects cannot be changed by calling code. They dso improve
concurrency because no locking is needed. (See “ Support object reuse for sendtive
information”, for an important exception to thisrule))

Never return a mutable object to potentially malicious code: Arrays are mutable even when
their contents are immutable. Do not return references to interna arrays that include sengtive
data.

Never store user-supplied mutable objects or arrays directly: Do not use a user-written
(versus devel oper-written and tested) cloning routine. Constructors and methods that accept
mutable objects, such as arrays of sendtive objects (e.g., public keys), should clone those
mutable objects and arrays before saving them internally. These congtructors and methods
should not directly assign the array referencesto an internd variable of asmilar type. If they do,
a user who uses the congtructor or method to create an object (including an immutable object)
may be able to accidentdly change the internd state of that object when making changesto an
externd array.

Make all classes and methods final: Unless there is a good reason not to, make every class or
method find to prevent hackers from extending it. It is true that findizing classes and methods
makes them impossible for the developer to later extend. But thisis a trade-off that is worth the
added security it provides. Do not use non fina public Satic variables.

180
FOR INFORMATIONAL PURPOSES

Draft

Make classes unclonable: To prevent an attacker from using Java s object-doning mechaniam
to ingantiate a class without running any of its congtructors, define the following method in each
class

private final Object clone()
t hr ows
j ava. | ang. Cl oneNot Support edExcepti on

t hrow new
j ava. | ang. Cl oneNot Support edExcepti on()

}

If aclass absolutely must be clonable, define a clone method and make it find, or add the
following method:

private final void clone()
t hr ows
j ava. | ang. Cl oneNot Support edExcepti on

super.clone();

Make classes unserializable: To prevent attackers from viewing the interna state (including
private portions) of objects, add this method to the classes in the program:

private final void
writeQObject(ObjectQutputStream out)
throws java.io. | OException {
t hrow new java.i o. 1 OException(" Obj ect
cannot be serialized");

Even if seridization is consdered acceptable, use the trangent keyword for fidds that contain
direct handles to system resources and contain information relaive to an address space. This
will prevent deseridization of the class from dlowing improper access. It isaso advisable to
identify dl sengtive information as trangent.

A devel oper-defined seridizing method for acdass should not pass an interna array to any data
input/data output method that takes an array, because dl data input/data output methods can be
overridden.

Make classes undeserializable: Classes, whether seridizable or not, should be explicitly made
deseridizable to prevent an atacker from creating a sequence of bytes that deseriaizesto an

181
FOR INFORMATIONAL PURPOSES

Draft

instance of a given class with vaues of the atacker’s choosng — (that is, dlowing the attacker
to choose the object’ s state. Add the following method to al classes:

private final void
readObj ect (Obj ect | nput Stream i n)
throws java.io.| OException

t hrow new j ava.i o. 1 OException("Cl ass
cannot be deserialized");

Do not compare classes by name. Thiswill prevent attackers from defining dlasses with
identical names, which are then granted the privileges of the vaid classes with the same names.
To determine whether an object has a given class do not use a congtruction such asthis:

if (obj.getClass().getNane().equal s("Foo")) {

Instead, use getClasy() to declare two classes, and then use the == operator to compare them,
asfollows
if (a.getClass() == b.getClass()) {

If the program must determine whether an object has a given classname, use the current
namespace (of the current class' s Classloader) to determine that name, such asthe following:
if (obj.getClass() ==
this. getCl assLoader ().l oadCl ass("Foo")) {

Rule of thumb: Avoid comparing class vaues. Instead, design class methods and interfaces so
that such comparisons are not required.

Use Syst em * cautioudly. Bevery careful, when writing Java servlets and JSPs, of how the
Syst em * command isused, especially Syst em Runt i ne.

You may aso beinterested in gpplying structured programming techniques to Java development. There

D.3.1PRIVILEGED JAVA CODE

The Java platform access control mechanism protects system resources from unauthorized access by
meaking sure that the calling code has the appropriate permissions for accessing that resource. When a
resource access is attempted, al code traversed by the execution thread up to that point must have
appropriate permissions to access the resource.

182
FOR INFORMATIONAL PURPOSES

Draft

However, some code may need to cal system services that access resources to which the caling code
does not have appropriate access permissions. For example, client code with the RuntimePermission
to load a certain ndtive library may call theloadLibrary system service; loadLibrary requires read
accessto the native library file. However, the client code does not have the gppropriate FilePermission
to dlow it to access the library file. A check on this execution thread for FilePermission would cause
the operation to fal.

The solution to this problem isto use the AP for privileged blocks, which alows the developer to mark
acalled code block as privileged, so that code block can call services based on its own permissions,
even though the code calling that block does not have those permissions. The privileged block API acts
in essence as awrapper for the code block that is granted privilege. (See
http://java.sun.com/j2se/sdk/1.2/docs/guide/security/doprivileged.html for a detailed description of the
API for privileged blocks).

Use privileged code blocks sparingly, if at dl. There are certain privileged services that can be
performed by system code on behdf of unauthorized clients even if the code is not encapsulated within a
privileged block. When writing privileged Java code, take these measures:

1. Write the code block to be as short and simple as possible. Enable privilegesfor aslittle code
as possible so that the privileged code can be easily audited to ensure that it accesses only the
minima amount of protected resources for a minima amount of time (i.e,, least privilege).

2. Beware of public methods or nonpublic methods, or both, invoked by public methods that wrap
privileged blocks deding with tainted variables—variables set by the caler by being passed as
parameters. Such variables will not be controlled by the privileged code. When amethod is
public, anyone can cdl it. If a public method isin a protection domain that alows accessto all
system properties (e.g., if it is on the boot-classpath), it will grant accessto dl system properties
to any piece of code (including applets) that cadlsit. Even if the method invokes a protected
function within a public class, anyone could extend the class and cdl the protected function
(unless the classisin aredtricted package; more informetion follows). If a privileged block is
wrapped by a method that accepts a tainted parameter or variable, the tainted variable could
compromise the security of such acode. Methods that accept caller-set variables and
parameters should dways be private methods that cannot be cdled from outside their own
class.

3. For acodeto perform atask that untrusted code or applets would not normally be permitted to
perform, the code must be wrapped in a privileged block, which will perform the task on behalf
of the untrusted code or gpplet. Tasks that cannot be performed by untrusted code include
these:

Reading system properties

Reading files (even filesin javahome)

183
FOR INFORMATIONAL PURPOSES

Draft

Opening sockets

Writing files (e.g., saving properties in gppletviewer)

Loading dynamic libraries with System.loadLibrary or Runtime.getRuntime.loadLibrary.
Refer to the Java programmer’s manua for specific guidance on use of the doPrivileged API.

Note that thedoPri vi | eged() method can beinvoked reflectively usng

java.l ang.refl ect. Met hod. i nvoke() ,inwhich casethe privileges granted in
privileged mode are not those belonging to Met hod. i nvoke(') , but those belonging to the
nonreflective code that invoked it. Otherwise, system privileges might be erroneoudy (or maicioudy)
conferred on user code. The same is true when using the existing AP! viareflection.

Recommended books and on-line resources for Java security gppear in Appendix B.

D.4HYPERTEXT MARKUP LANGUAGE

Allowing any hypertext markup language (HTML) in user input isarisk. If possble, HTML tags should
be drictly prohibited from user input. If thisis not possible—such asin aWeb mail gpplication or
message board—implement an extremey redtrictive lis of the few HTML tags that users may include in
thelr input.

Thefollowing HTML tags can cause security problems because they open access to externd pathnames
to invoke externd logic, reformat the Web page presentation, or load alarge object such asagraphic
file. For this reason, these tags should be prohibited in user input:

<APPLET>
<BODY>
<EMBED>
<FRAME>
<FRAMESET>
<| LAYER>
<l M&G>
<LAYER>
<META>
<OBJECT>
<SCRI PT>
<STYLE>

In addition, the following attributes should be used with caution:

STYLE
SRC (e.g.,
HREF (e.g.,
TYPE

184
FOR INFORMATIONAL PURPOSES

Draft

Asfor the HTML that you post as Web content, we strongly recommend running al HTML through an
HTML validator before pogting it. There are severa on-line vaidators. We have found the Web Design
Group HTML vdidator the most useful, because unlike many of the others it gives warnings for vaid
but dangerous HTML congtructions. They include unclosed sart-tags (e.g., <p><i ng sr c=gov

al t =bar </ p>), undosed end-tags (e.g., <p><enpt ext </ enx/ p>), empty sart and end-tags
(e.g., <p>t ext </ >), and net-endbling sart-tags (eg., <i ng al t =DoD sr c=bar/ baz>).
We have aso found the errors detected by the HTML Web Design Group vaidator to be the most
relevant. For example, it does not report XML errors when you only want to vaidate HTML ; by
contrast, the on-line W3C HTML validation service reports both XML and HTML errors during the

The introduction of scripting languages and interactive cgpabilitiesin HTML 4.0 introduced a number of
security risks associated with the automatic execution of programs written by the sender but interpreted
by the recipient. Browsers that execute such scripts or programs must be extremey careful to ensure
that untrusted software is executed in a protected environment.

D.5 XML AND SDML

D.5.1 EXTENSIBLE MARKUP LANGUAGE

The emerging extensble markup language (XML) security standards define XML vocabularies and
processing rules to meet security requirements. These standards use legacy cryptographic and security
technologies, aswell as emerging XML technologies, to provide aflexible, extensble and practica
solution toward meeting security requirements. The emerging XML security standards include

XML digitd sgnature (DS g) for integrity and Sgning solutions
XML encryption for confidentidity
XML key management (XKMYS) for public key regidtration, location, and vaidation

Security assartion markup language (SAML) for conveying authentication, authorization, and
attribute assartions

XML access control markup language (XACML) for defining access control rules
Patform for privacy preferences (P3P) for defining privacy policies and preferences.

XML security defines acommon framework and processing rules that can be shared across
gpplications usng common tools, avoiding the need for extendve customization of applicaionsto add
security. XML security reuses the concepts, algorithms, and core technologies of legacy security
systems while introducing changes necessary to support extensible integration with XML. Thisdlows
interoperability with awide range of existing infrastructures and across deployments.

185
FOR INFORMATIONAL PURPOSES

Draft

As noted, the XML security standards define XML vocabularies for representing security information,
using XML technologies, such as XML schema, for definition. An example is the <Keylnfo> eement
defined in the XML Dsg recommendation for carrying Sgning or encryption key information. This
definition is used in a number of the specifications. The specifications define a shared meaning for the
XML vocabularies.

For an extensve discussion of the various XML security features and their use, see

D.5.2SIGNED DOCUMENT MARKUP LANGUAGE

Until the XML DSg (dong with other XML security standards) isfindized, a possble interim dternative
to create digitally sgned tagged text documents is signed document markup language (SDML),
developed by the Financid Services Technology Consortium (FSTC) as part of the Electronic Check
Project. SDML enables cryptographic signatures to be embedded in structured, tagged-text documents.
Specificadly, SDML isdesigned to

Tag theindividud text items making up a document

Group the text items into document parts that can have business meaning and can be signed
individudly or together

Allow document parts to be added and deleted without invaidating previous signatures

Allow ggning, cosigning, endorsing, coendorsing, and witnessing operations on documents and
document parts.

SDML documents are hashed and cryptographicaly signed using public key sgnature dgorithms. The
sggnatures become part of the SDML document and can be verified by subsequent recipients as the
document travel s through the business process. SDML does not define encryption, because encryption
is between each sender and receiver in the business process and can differ for each link depending on
the transport used.

D.6 ASP AND JSP

D.6.1 DO NOT STORE SENSITIVE DATA IN THE ASP OR JSP PAGE

The sengitive data that developers are most likely to want to store in JSP pages are usernames and
password combinations for accessing various resources (e.g., membership directories, database
connection strings). Authentication credentids can be entered manualy, by the user, or automaticaly by
various wizards or design time controls. Although * SP scripts are processed on the server, and only the

186
FOR INFORMATIONAL PURPOSES

Draft

results are sent to the client, anumber of known security vulnerabilities in Web servers have dlowed the
source of * SP pages to be displayed by the browser rather than executed.

For example, two very well-known bugs in the Microsoft Internet Information Server (11S) Web server
have repeatedly caused ASP to be displayed when the user appended to the end of the URL pointing to
the ASPfileadot (.) orthedring : : $DATA — asin the following:

http://<site>/anypage. asp.
http://<site>/ anypage. asp: : $DATA

Another anomaly, known as the Trandaef bug, has aso been seen to dlow the same outcome on 11S
servers. Smilarly, two recent anomalies have affected BEA Weblogic servers and IBM WebSphere
servers. These are documented at the following:

http:/Amww.foundstone.com/FS-072800-9- BEA .txt
Y and ¥
http:/Aww.foundstone.com/FS-072400-6-1BM..txt

The Allaire JRun JSP engine has had a different anomaly that alows the same outcome reported. Thisis
documented at the following:

http://www.dlare.com/handl ers/index.cfm? D=16290& M ethod=Full

D.6.2JAVA SERVER PAGES

The Java Server Pages (JSP) technology facilitates the creation and management of dynamic Web
content by embedding Java code logic insde HTML and XML documents. The JSP engine will
preprocess and convert the JSP into a Java Servlet (serviets). Subsequent requests for the page will
result in the Web server responding with the output generating the corresponding serviet. Although they
are functionally the same, JSP represents a reversed approach to dynamic content generation compared
with serviets, in that the focusis on HTML documents with embedded Java code instead of a servlet
with embedded HTML tags. JSP offers enhanced performance and session management by using Java
threads to handle multiple servlets running ingde one process. CGlI scripts generaly require the cregtion
and destruction of aprocess for each request. JSP differs greetly in architecture from most server-side
technologiesin that it is an object- oriented, component-based architecture, and it is just one of the APIs
that a developer could use under the Java 2 Enterprise Edition (J2EE) platform.

By the nature of providing access to resources on a server, insecure Java servlets generated from JSP
pages can put & risk any or al of the server, the network on which the server resides, the clients
accessing the pages, and, through worm didribution attacks, the entire Internet. Despite dll of the inherit
security features of Java, it does not make applications secure on itsown. It is not difficult to write
insecure Java, especialy when developing JSP and servlets. Vdidating input and controlling access to
resources always need to be consdered. Furthermore, JSP is acomplex architecture, where in many

187
FOR INFORMATIONAL PURPOSES

Draft

components come together; as a result, the interactions between them are often sources of security
breaches.

Discussions follow on specific security concerns to be aware of, as well as countermeasuresto
implement when using JSP.

D.6.2.1 Input from Untrusted Users

Input from an untrusted user originates from the client (browser) but can reach the server through many
different methods, and sometimes under disguise. Some common sources of user input for a JSP page
are:

The parameter string portion of the URL

Data submitted by HTML formsthrough POST or GET requests
Data temporarily sored in the client browser (cookies)

Queries to a database.

The problem with user input isthat it can be interpreted by the server-side applications and thus an
attacker can craft the incoming data so asto control some vulnerable aspect as of the server. These
vulnerabilities can present them as points of access to dataidentified by user supplied qudifiers.

JSP can access native code libraries through a Java Native Interface (INI) and execute external
commands. Every Java gpplication has asingle ingance of class run time that alows the application to
interface with the environment in which the gpplication isrunning. The dassruntimehasan exec()
method, which interprets its first arguments as a command line to execute in a separate process. If parts
of the command-line string must be derived from user input, this input must be filtered to ensure that only
the intended commands are executed, with the intended arguments. It isaso possible for an attacker to
modify environment variables in the server environment and affect the execution of externad commands,
for example, by changing aPATH variable to point to mdicious code. To avoid thisrisk, set the
environment explicitly before making externd cals. Thiscanbedoneby usngexec(Stri ng

cmd, String[] envp) method sgnaure and providing an aray of environment variables asthe
second argument. The variable must have the format name=val ue.

A smilar Stuation arises when user input is used to identify input or output Streams thet the program
opens. Access to files, databases, or other network connections must not depend on invaid user input.
The following JSP construct accessing the Java Database Connectivity (JDBC) APl service (an AP
used for database operations) is highly insecure. The attacker can embed command separation
characters in the submitted input and execute unwanted commands on the SQL server; thisisaso
known as Uniform Resource Locator (URL) manipulation.

<%@ page i nport="java.sql.*" %
<l -- open a database connection here -->

188
FOR INFORMATIONAL PURPOSES

Draft

<%
Statenent s = connection. getStatenment();
String dbQuery = "SELECT * FROM USER DATA WHERE
USER = " +
request. get Paramet er ("user nane") ;
Resul t Set result = s.executeQuery(dbQuery);
%>

If the username contains a semicolon, asin

http://server/db.jsp?
user nanme=j ohn; SELECT%20* ¥20FROVR0SYSTEM RECORDS

Then the attackers could gain access to or damage parts of the database that they are not entitled.
Some SQL servers will ignore the whole query, but others will proceed and execute the two
commands. The solution to this problem is achieved through appropriate input validation.

D.6.1.2 Input Validation

Input vaidation congsts of performing syntactic and sometimes semantic checks on data derived from
externd (un trusted) sources. Assume that al users are untrusted and never assume they will input valid
data. Depending on the criticdity of the application, the actions performed as aresult of input vaidation
my be one or more of the following:

Escaping unsafe syntactic eements

Replacing syntactic dements with safe e ements

Reporting error conditions

Strong type checking

Checking the length of string arguments received from a URL query.

Desgn gpplications that dlow only validated user input. The following section details two methods of
providing data input vaidation usng JSP.

D.6.1.2.1 Client-Side JSP Validation Scripts

Although JavaScript can be embedded in the JSPin, or caled externdly by, the client (browser) to
perform validation of the length and type of input Sde that checks, this technique is not an acceptable
means of data input validation. Users can disable and bypass scripting performed in the browser. Client-
sde scripting should by used only in combination with server-side validation, to dleviate tasks
performed by the server.

189
FOR INFORMATIONAL PURPOSES

Draft

Client-side scripting should be used only if timing congraints in the gpplication make the delay imposed
by server-gde vaidation unacceptable. In this case (and only this casg), input vaidation may be
distributed between client and server, using a carefully written client-sde script to perform the initid
vaidation of data, and then forward that data to the server for a confirmation check of its vaidity by the
server. Implemented correctly, this gpproach should result in the client filtering out obvioudy
problematic information and never forwarding it to the server. If dient-sde vdidation is performed
correctly, the server will receive only data that are acceptable in its businesslogic and, as aresult,
should be able to execute fewer vaidations.

The following script checks for invalid user input by checking for bad character data:

<SCRI PT LANGUAGE="JavaScri pt">
function SYMBOL_CHECK(TheObj Val ue)

{

if (TheObj Value.match(/[\\\/:*?2<>|]1/)) {
return 1;
}

}
function SYMBOL_CHECK2(TheObj Val ue) {

if (TheObj Value.match(/[\\\/:*?2<>|]1/)) {
return 1;
}

}
function SYMBOL_CHECK3(TheObj Val ue) {

if (TheObj Val ue. match(/["a-zA-20-9]/)) {
return 1;
}

return O;

return O;

return O;

This script can be used by another script that checks for null values and proper length of username

input.

function checkForm()

{

var error_string = "";

/'l check the firstname field
if (w ndow. docunent.the_formfirstnane.val ue ==

{

error_string += "First nanme m ssing.\n";
}
/'l check the lastname field

190
FOR INFORMATIONAL PURPOSES

Draft

if (wi ndow. docunment.the form |l astnane. val ue ==

")
{
error_string += "Last nane m ssing.\n";
}
/'l check the usernanme field
i f (w ndow. docunment.the_form usernane. val ue ==
")
{
error_string += "User nane is mssing.\n";
}
i f
(w ndow. docunent .t he_f orm user nane. val ue. | ength
< 8)
{
error_string += "Usernanme nust be between 8
and
12 chars";
}
i f
(w ndow. docunent .t he_form user nane. val ue. | ength
> 12)
{
error_string += "Username nust be between 8
and
12 chars";
}
/'l check for bad character data
var usernane =
wi ndow. docunent . t he_form user nane. val ue;
var result = SYMBOL_ CHECK(usernane);
if (result == 1)
{
error_string += "Bad Chars";
}
if (error_string =="")
{
return true;
}else {
error_string = "The foll ow ng om ssions
wher e
found in the form \n" + error_string;
alert(error_string);
return false;
}

191
FOR INFORMATIONAL PURPOSES

Draft

}
</ SCRI PT>

Hereisan HTML snippet of aform that processes the data on the client before handling input over to a
sarvlet. TheonSubm t function of the form will initidize the JavaScript function check For m() :

<FORM NAME = "the_form' ACTI ON="soneservl et"

METHOD=" POST"
onSubm t="var the_result = checkForm();

return the result;">

First Name: <INPUT TYPE="text" NAME="firstnane">
Last Name: <INPUT TYPE="text" NAME="I| astnanme">
User Name: <|INPUT TYPE="text" NAME="user nane">
<I NPUT TYPE="submt" val ue="Submt New User">
<I NPUT TYPE="reset </FORM>

Notice that the HTTP method for a server request is POST. Using POST will not display the query
gring inthe URL. Thisis very important when sending username and password attributes across a
network. If you do not explicitly assign avariable to the METHOD aitribute, the default will be GET.
Agan, thisisonly asnippet of what can be done to ensure the gpplication will accept only vaid data
Once again: Do not rely on dient-sde scripting as the main protector againgt invaid data

D.6.1.2.2 Server-Side JSP Validation

Server-side vaidation gives you complete control over how data are vaidated on the server. Server-
sde validation can be performed by a JSP script or serviet. That script or servlet receives the form
action submitted by the client and verifies that the data are within acceptable limits. Depending on the
outcome of the vaidetion, the script or servlet:

Accepts the data or
Rejects the data and returns an error message to the user and

Redisplays the form to the user with a description of the correction required, and asks the user
to reenter the data correctly and resubmit the form.

Theonly drawback of server-side validation is that the need for the user to resubmit requests for
vaidation each time can incur adelay between the submission of an update by the client, aswell asa
delay in the acceptance of that update after vaidation processing by the server. If thisdday is
unacceptable in a particular application, it may be possible to judicioudy distribute a portion of
vaidation to the client, as described in the forgoing “ Client-Side JSP Vdidation Scripts’. Combined
with dient-side scripting, the examples in the following sections should greeily help in your development
of secure JSPs and servlets.

192
FOR INFORMATIONAL PURPOSES

Draft

Below is an example of how server-sde vaidation can be done using a JSP form, a servlet for
vaidation, and JavaBean to encapsulate user input data. The form will collect information from the JSP
form and vdidate it through the serviet, which serves as aform handler. The fields in the form will be
smple: Last Name, First Name, E-mail, and Socid Security number. This example will illustrate basic
vaidation on data. We want to make sure that the user enters his or her first and last name, that the e-
mail isactudly an e-mail address, and that the Socid Security number has the correct number of
digits—9. If an error occurs, the user will be sent back to the form to try again.

D.6.1.2.3 Using JavaBean to Handle Invalid I nput Submissions

Using a JavaBean makes it easer to repopulate the form fidds with the user’ s data after aninvadid
submission. Because another servlet performs the input vaidation, you need to specify only the GET
and SET methods. The bean tags will update the form after it has been populated, asin the following
example

public class UserBean {
private String firstNane;
private String |astNanme;
private String ssn;
private String email;

[/ default constructor

public UserBean() {
this.firstName = "";
this.lastName = "";

this.ssn = "";

this.emnil ="";

}

/] get met hods

public String getFirstName() {

return firstName;

public String getLastName() {
return | ast Nane;
}

public String get SSN() {

return ssn;

}

public String getEmail () {

return email;

}

|/ set net hods

public void setFirstNanme(String firstNane) {
this.firstName = firstNanme;

}
public void setLastName(String |astName) {
this.last Name = | ast Nane;
193

FOR INFORMATIONAL PURPOSES

Draft

}
public void setSSN(String ssn) {

this.ssn = ssn;

}

public void setEmail (String email) {
this.email = email;

}

public String toString() {
String userData = "";
userData = firstName +" "+ | ast Nane
+"\n"+ssn+"\ n" +emi | ;

return user Dat a;

}
D.6.1.2.4 Security-Aware JSP Forms

The JSP form that follows will populate the UserBean with any data that are present in the request. If
there is a vdidation problem following submission, the request will be directed back to the page
populating the form with data. Thisis handled by the FormHandler Serviet in the example. Whether or
not there are empty data, usethe<j sp: get Pr oper t y> tagsto populae default vauesin the form
fidds

<HTM>
<% /* call the UserBean class */ %
<j sp:useBean id="form' cl ass="User Bean">
<j sp: set Property nanme="user bean" property="*"/>
</ sp: useBean>

<BODY>
<%

String[] errors =
(String[])request.getAttribute("errors");

if (errors !'= null && errors.length > 0) {
%>
Pl ease correct the follow ng errors

<% for (int i=0; i < errors.length; i++) { %
<% errors[i] %
<%} %
</ UL>
<%} %

<FORM METHOD=POST ACTI ON="For nHand| er Servl et "
met hod="post " >

<I NPUT TYPE="text" NAME="| ast nane"

val ue="<j sp: get Property

194
FOR INFORMATIONAL PURPOSES

Draft

name='form property='Ilastnane'/>">
Last Nane</ B>

<I NPUT TYPE="text" NAME="firstname"
val ue="<j sp: get Property

name='form property='firstnane'/>">
Fi r st Nanme</ B>

<I NPUT TYPE="text" NAME="ssn"
val ue="<j sp: get Property

name='form property='ssn'/>">
Soci al Security # (123456789)

<I NPUT TYPE="text" NAME="email"
val ue="<j sp: get Property

name='form property="email"'/>">
E-mai | # (user @ost)

<I NPUT TYPE="subm t" Val ue="Submt Forni>
</ FORM>
</ BODY>
</ HTML>

The following serviet will perform the necessary form handling, including vaidating user inpt,
performing whatever operation is required by the application, and redirecting the user to the next pagein
the process. Thisisthe crux of dl input validation: it enables you to exercise full control over data
checking. In addition, the servlet does not have to be modified as the form changes, which increases

reusability.

STEP 1. Thefirst step performed by the servlet isto retrieve the values of the request
attributes:

public class FornmHandl er Servl et extends HttpServl et

{

public void service(HttpServl et Request req,
Ht t pSer vl et Response res)

t hrows Servl et Exception, | OException {

Vector errors = new Vector();

/1 get attribute values from request

String firstname =
(String)req.getAttribute("firstnane");

String | astname =
(String)reqg.getAttribute("l ast name");

String ssn =
(String)req.getAttribute("ssn");

String email =
(String)reqg.getAttribute("email");

195
FOR INFORMATIONAL PURPOSES

Draft

STEP 2: The servlet checksfor valid input using the specified methods that return flagsif the
serviet findsan error:

/'l check for valid input
if (firstname == null) {
errors. add(" Pl ease provide your first

name") ;
if (lastname == null) {
errors. add(" Pl ease provide your first
name") ;
}
if (!isValidSSN(ssn)) {
errors.add("Pl ase specify a valid SSN, i.e

1234556789") ;

if (tisvalidEmail (email)) {
errors.add("Emai |l address nmust contain
a @synbol");
}
private boolean isValidSSN(String ssn) {
/!l check for nine characters

return (ssn.length() == 9 &&
ssn. i ndexOf ("-") == -1);
}
private bool ean isValidEmail (String email)
{
/1 check for "@ sonewhere after the
first character

return (email.indexOr("@) > 0);
}

STEP 3: The servlet checksfor validation errors. If thereareany validation errors, the
serviet returnsthe form to the user and asks him to correct theinvalid input. If no validation
problems arefound, the servlet returnsthe next pagein the processto the user:

if (errors.size()==0) {
/'l data is ok, dispatch to next page
got oPage(" next.jsp");
} else {
/'l data has errors, resubmt
String[] errorList =
(String[])errors.toArray(new
String[0]);
req.setAttribute("errors", errorlList);
got oPage("formjsp");

196
FOR INFORMATIONAL PURPOSES

Draft

}

private void gotoPage(String address,
Ht t pSer vl et Request request,
Ht t pSer vl et Response
response)
t hrows Servl et Exception, | OException {
Request Di spat cher di spatcher =

get Ser vl et Cont ext (). get Request Di spat cher (addr ess
);
di spatcher. forward(request, response);

}
D.6.1.2.5 Other JSP Security | ssues

Aswith any other Web technology that uses a CGl protocol, there are other security issuesto be avare
of, including these:

Do not send data via a GET request: The most trivid method for transferring request data
from the client to the server-side gpplication is the GET request. In this method, input deta are
gppended to the URL and are represented in the following form:

URL[?nanme=val ue[&hanme=val ue[&..]]]

Thisis clearly an unacceptable method to transmit data over the Web. Instead, dways use
POST with an appropriate encryption method, (such as an over an Secure Sockets Layer
[SSL] connection).

Do not store sensitive user information in cookies: A security exposure is created when
sengtive information is stored in cookies, for two reasons. (1) the whole content of the cookieis
vishleto the client, and (2) there is nothing to prevent a user from responding with aforged
cookie. Together, these vulnerabilities make cookies untrustworthy and thus unacceptable
mechanisms for storing security data or other sengtive information.

Be aware of implementation vulnerabilities: Certain versons of JSP implementations have
been discovered to contain security vulnerabilities. Before using any JSP product, dways refer
to the vendor’s Web site and download and apply dl current bugs and fixes to prevent security
vulnerabilities

D.7 CGl AND PERL

D.7.1 SECURE CGI SCRIPTS

CGl scripts may be quite complex or they may congst of only afew lines of text. The most common
scripting languages for Web gpplications are VBScript, JavaScript, Perl, and Python. Scripts require the
existence of a scripting engine before they can run. As aresult, scripts are dower than compiled

197
FOR INFORMATIONAL PURPOSES

Draft

goplications, because they must be interpreted instead of being compiled in advance and running in ther
native (binary) form.

A script that interacts with a networked client is aways a potential target of attack. For that reason, it is
vita that CGI scripts be written extremely carefully to ensure that they do not threaten the integrity of the
application or gain unauthorized access to the server.

The following recommendations should increase the safety of your CGI scripts:
1. Do not write shell scripts.

2. Turn off server-side includes in the directories in which CGI scripts will be stored. Also make
sure that the server will not attempt to parse any CGI script for server-sde includes. Server-
sde includes can be abused by attackers if the directoriesin which they are available store
scripts that directly output data sent to the scripts or that modify HTML. Server-side include
attacks can be used to

Mail the password file (if not shadowed) to the attacker (see example that follows)
Mail amap of the file system to the attacker

Mail system information from the UNIX /etc directory to the attacker

Start alog-in server on a high port and telnet into the server

Cause adenid of sarvice, for example, by initiating avery large file sysem find or
another resource-consuming command

Erase and/or ater , or do both to the server’slog files.

3. Donat dlow “<” and “>" in user input: ether rgect the input, or escape the characters (by
prepending them with aback dash).

4. Remove dl comments from CGI scripts and HTML code.

5. Implement asmple program to validate dl HTML input to CGI scripts,

6. Useonly well-known libraries to parse CGI input, such as CGI.pm, to parse Perl scripts.
7. Donotusetheeval satement.

8. Never trugt the dient. Although awell-behaved dlient will escape any charactersin aquery
gring that have specid meaning to the system shdll—thus avoiding having the CGI script
misinterpret those characters—a maicious user may intentionaly include specid charactersin
query strings to confuse the CGI script and gain unauthorized access to the server.

198
FOR INFORMATIONAL PURPOSES

Draft

0.

10.

11.

12.

13.

14.

15.

16.

Do not trust user-supplied data even if the script does not invoke ashell.

Do not use the HTTP_REFERER header, which originatesin the untrustworthy browser and
not in the server, for authentication in a CGI program.

Be careful when usng commandsthat could fork ashell, suchassyst em(), exec(), or
the back tick (") inPerl; or popen() inCand C++. To avoid invoking the shell when using
system() andexec() in Perl, supply more than one argument to the cdl, asin this
example

system(‘/usr/lib/routine’, ‘-0");
In C and C++, useopen() indead of popen() Hereisan example:
open(FH, ‘|-") || exec("progranl, $argl, $arg2);

In Perl, avoid the functionsopen() , gl ob, and the backtick (*) . All three call the shell to
expand filename wild card characters. Instead of open() usesysopen(), or, if usng Perl
5.6 or later, useopen() with three parameters (consult theper | opent ut () man page).
Instead of back ticks, usethesyst em() cdl or an even safer cal.

Validate dl data and do not accept insecure data or metacharacters or pass them to the shell.
Better yet, instead of amply detecting the metacharacters, escape them.

NOTE: “\" (back dlash), the shell escape character, may itself be present in input
data and cause problems. Note also that ASCII 255 istreated as a delimiter by
some shells and may need to be escaped.

Encode dynamic output to prevent malicious scripts from being passed to the user.

Inyour CGI script, turn on the warning flag (- w) to warn of any potentialy dangerous or
obsolete statements.

Condder running the CGI script in arestricted environment, such as the Perl sandbox described
intheper | sec() man page, or the Safe module in the standard Perl digtribution.

Do not make assumptions about the operating environment. Do not write cgi-bin under the
assumption that it will run in asafe environment on the Web server. It is possible for an attacker
to execute a cgi-bin program (or force its execution) in an unexpected context. Like dl
programs, cgi-bin programs (particularly thosethat run set ui d on UNIX servers) should
sanitize their own environments before creating any shells or invoking any other programs. At a
minimum, st the value of the PATH and | FS environment variables to a known state by
resetting the environment to null, and then building a new, known environment (on UNIX, use
undef () to reset the environment).

199
FOR INFORMATIONAL PURPOSES

Draft

NOTE: In taint mode, Perl will warn you if the script attemptsto call syst en()
without first setting the PATH and IFS variables appropriately.

17. Always use Perl taint mode unlessthereis aredly good reason for not doing so. Perl taint mode
is one of the best tools for ensuring the security of Perl CGI scripts. Use Perl5 rather than other
versons of Perl to be sure the language provides taint mode support.

D.7.2 PERL TAINT MODE

Taint mode causes Perl to perform extra security validations when accessng variables and making
function calls. Taint mode checks ensure that any tainted data received from outside the program are not
used, directly or indirectly, to modify files, processes, or directories.

Specificdly, taint mode prevents data derived from outside the program from accidentally affecting
anything else outsde by program. It marks such data as tainted. All externdly obtained input is marked
astainted, including:

Command-line arguments

Environment varigbles

Locdeinformation (seeper | | ocal e())

Resaultsof ther eaddi r andr eadl i nk sysem cdls
Results of the gecosfidd of get pw* cdls

All fileinput.

Tainted datamay not be used directly or indirectly in any command that invokes a sub shell, nor in any
command that modifiesfiles, directories, or processes. There is one important exception: If the script
passes aligt of argumentsto either sy st emor exec, thedements of that list will not be checked for
taintedness. Be epecidly careful when using sy st emor exec whilein taint mode. Any data vaue
derived from tainted data becomes tainted also.

To untaint data, extract a subgtring of the tainted data. Do not Smply use “*” as the substring that will
defeet the taint mode mechanism atogether. Instead, identify safe patterns to be allowed by the CGI
script, and use them to extract good vaues. Check al extracted vaues to ensure that they do not
contain unsafe characters or exceed safe lengths.

When invoking Perl asaset ui d program or CGI script, placethe - T flag a the end of the
command line to put Perl into taint mode. For example, to do this:

#!'/usr/bin/perl -T

Seetheper | sec() man pagefor details.

200
FOR INFORMATIONAL PURPOSES

Draft

Perl and mod_perl systems enable you to add to script input validation of HTML-escaped input data.
For example, insart the following line of code before any output to diminate any input thet is not an
aphanumeric character or a space:

$text =~ s/["A-Za-z0-9]*/ /q;
D.7.2.1 Other Methods for HTM L-escaping Data in Per|

1. Usethe HTML: : Entiti es::encode() functioninthe HTML::Entities modulein the
libwww-perl CPAN distribution to escape HTML charactersin input data by encoding them
into HTML entity references.

2. When usng the Apache: : Registry script or mod_perl handler, use

Apache:: Util::escape_htm () intheApache :Registry to encodedl HTML
input.
3. Ratherthantyping Apache: : Uti |l : : ht M _encode() every timeyou need to vdidate

an input, use the Apache: : TaintRequest module (see Appendix C) to automate escaping of
HTML data. The action that is gpplied to the whole script to HTML-escape any data item that
isfound to be tainted and passes dl untainted data to the browser without atering it.

D.7.3 CHANGING TO OWNER’SACCOUNT TO RUN CGI SCRIPTS

Most HTTP daemons (httpds) do not change the CGI script’s account (username) to thet of the
script’sowner. Instead, they run the CGI script under the “nobody” account. As aresult, these scripts
require files to be world writable, or UNIX CGlsto besui d.

Individua files should never be world writable, even if the directory that contains them is. Making the
directory only world writable enables you to have the CGI script to write afile owned by “nobody,”
and then to restore directory permission afterward (within the limitations of file system disk quotas, etc.)

CGlwrap (see Appendix C) isagood toal for changing change a CGI script’s username to run under
the owner’ s account, instead of as *nobody.”

information).
D.8 STRUCTURED QUERY LANGUAGE

Within Structured Query Language (SQL) itsdlf, there are no known commands or congtructs that can,
on their own, cause a system to crash or misbehave. However, the del ete command can be used to
madicioudy delete data

Because an SQL statement can be made only by an entity that has been authenticated againg avaid
database account, SQL statements from users unknown to the database will not be processed.

201
FOR INFORMATIONAL PURPOSES

Draft

A number of vulnerabilities exist within several Oracle 9i products and supports services that may cause
buffer overflows, denid of service, mismanagement of permissons, or unauthorized data disclosure.

Information on avoiding SQL injection and other database security issues gppearsin Section 4.5.2.9.

D.9SHELL SCRIPTING LANGUAGES

Do not write or use system shell or command shdll script languagesin DoD Web gpplications.

D.10 TOOL COMMAND LANGUAGE

Tool command language (TCL) comprises two parts. the language and the library. The languageisa
ample text language used to issue commands to interactive programs. It includes basic programming
capabilities. The TCL library can be embedded in application programs. In their effort to make TCL as
smal and smple as possible, however, its designers have created alanguage that is somewhat limited
from a security standpoint.

Because TCL was designed to be a scripting language, it has few of the capabilities of afull-blown
programming language. It has no arrays or any structures from which you create linked ligts. It smulates
numbers, which dows TCL programs down. As aresult, TCL is suitable only for small, smple
programs.

In TCL, thereis only one data type, string. Thisand its other limitations make programming anything
other than very smple scriptsin TCL difficult. In addition, TCL executables tend to run dowly. With
TCL, developers can accidentdly creste programs that are susceptible to madiciousinput strings. For
example, an attacker can send characters with specia meanings to TCL such as embedded spaces,
double quotes, curly braces, dollar signs, and brackets. An attacker might even send input that causes
these characters to be created during processing, to trigger unexpected and even dangerous behavior in
the TCL program.

For al these reasons, TCL—should not be used to write programs that perform security functions, such
as mediating a security boundary.

Thereisapromising dternative to generic TCL—Safe-TCL, which creates a sandbox in which the TCL
program operates. Safe-TCL should be implemented in conjunction with Safe-TK, which implements a
sandboxed portable GUI for Safe- TCL. Because it contains its own sandbox feature, Safe- TCL may
be a good language in which to implement simple mobile code condructs. See Appendix C for more
informetion.

D.11 PHP
Older PHP versions (4.1.0 and earlier) are less secure than most languages due to the way PHP loads

datainto its namespace. That is, al environment variables and vaues sent to PHP over the Web as
globa variables are automaticaly loaded into the same namespace with normal varigbles, enabling

202
FOR INFORMATIONAL PURPOSES

Draft

attackersto st these variables to arbitrary values that endure until they are explicitly reset by a PHP
program.

When avaridble isfirg requested, PHP automatically creates that variable with a default vaue.
Therefore, PHP programs often do not initialize variables. If the programmer forgetsto set avariable,
PHP must be explicitly configured to report the problem; by defaullt, it will Smply ignore the problem.
Thus, by default, PHP alows the attacker to completely control the vaues of dl variablesin the
program, unless the programmer has written the program to explicitly reset dl PHP default variables as
soon as it sarts executing. Failing to reset a single variable may create a vulnerability in the PHP

program.

For example, the following PHP program s intended to implement an authorization check to ensure that
only users who submit the correct password are alowed access to the sengitive information. However,
smply by sdtting auth in his Web browser, the attacker can subvert this authorization check:

<?php
if ($pass == "hello")
$auth = 1;

if ($auth == 1)
echo "sensitive informati on";
?>

It is possible to disable this vulnerability, and diminate the most common PHP attacks, by setting
regi st er gl obal s to off (thedefault in older versons of PHP ison, and these versons are
hardtousewithr egi st er _gl obal s set to off).

In PHP verson 4.2.0 and later, the default for r egi st er _gl obal s ison. Thisisone of severd
reasons to use only later PHP versions. In PHP 4.2.0, external variables received from the environment,
the HTTP request, cookies, or the Web server, are no longer registered in the global scope by defaullt.
Instead, they are accessed byusing the language’ s new Superglobal arrays. Severa other specia
arays—mogt notably $ REQUEST—make it easier to develop PHP programs when

regi ster_gl obal s isoff.

Note that many third- party PHP gpplications will not operate correctly (or in some cases at al) with
regi st er_gl obal s setto off. Therefore, it may be possible to set this sdectively only for the
programs that can operate. For example, on an Apache Web server, insert the following lines into the
file .htaccess in the PHP directory:

php_flag register_globals O f
php_flag track _vars On

203
FOR INFORMATIONAL PURPOSES

Draft

Also consder using directory directives to further control it. Furhter, note that the .htaccess file itsdf will
be ignored unless the Apache Web server has been configured to permit overrides. Check to be sure
that the Apache globa configuration is not configured with Al | owOver r i de set to None. Instead, it
must “AllowOverride Options’ in its configuration file. Thiswill enable you to write heper functions that
amplify loading the data needed by your PHP programs—and only those data.

The later versons of PHP aso provide functions that make it easier to specify and limit the input the
program should accept from external sources. Routines can be placed in the PHP library to enable users
to list the input variables they want to accept, and functions can be written to check the vadidity of the
patterns and types of variables before coercing the program to use them.

There have aso been reports of aformat string problem in the PHP error reporting library. That
problem is expected to be fixed in later averson. However, PHP generdly has not had wide enough
use to expose other possible security vulnerabilities in the language.

If you cannot possibly setr egi st er _gl obal s to off, write the program to accept only vaues not
provided by the user, and do not trust PHP default vaues. Do not trust any variable that has not been
explicitly set. Remember that these variables must be set for every entry point into the program itsdf and
in every HTML file that uses the program.

The Following guiddines will be useful:

Begin each PHP program by resetting dl variables, including globaly referenced variables
referenced trangtively in included files and libraries, even if this means Smply resetting them to
the default vaues. Thiswill entail having to learn and understand dl of the globd varigbles that
might be used by the functions called in your program. Search through the HTTP_GET_VARS,
HTTP_POST_VARS HTTP_COOKIE_VARS and HTTP_POST_FILESto determine the
originator of the data (it should not be a user). This search needs to be repeated whenever a
new verson of PHP comes out, because it may add a new data source.

Write the program to record dl errors by piping them to error reportsin alog file.

Filter dl user information used to creete filenames to prevent remote file access. PHP defaultsto
remote files functiondity enabling it to use commandslikef open() , which in other languages
can open only alocdl file, to invoke Web or FTP requests from other Sites,

Useonly theHTTP_POST_FILES array and related functions to upload files and access
uploaded files. PHP dlows atackers to temporarily upload files with arbitrary content. This
cannot be prevented in the language itself.

Place only protected entry points in the document tree, and place dl other code—that isthe
mgjority of code—outside the document tree. Do not place .inc (include) filesingde the
document tree.

Do not use PHP s sesson mechaniam, for it dill contains security vulnerabilities

204
FOR INFORMATIONAL PURPOSES

Draft

After vdidating dl inputs, use type casting to coerce nondiring data into the type it should have.
Develop helper functions to check and import a selected list of expected inputs. PHP isloosely
typed, which can cause problems. For example, if an input has the value 000, it will not be
interpreted as 0 or enpt y () . Thiscan present a problem when using associative arraysin
which the indexes are grings, meaning that $dat a[" 000"] isnot thesame as

$dat a[" 0"] . Tomake sure $bar isassigned the type double (after verifying thet its
format islegd for adouble), write$bar = (doubl e) $bar;

Be very careful when using the following functions:

- Code execution

require()

i ncl ude()

eval ()

preg_replace() (with or without the /e flag)

- Command execution

exec()

passt hru()

* (backti ck)
system()
popen())

- Open file commands
fopen()

readfil e()
file()

Theforegoing list is not exhaugtive; refer to the PHP specification for dl code and command execution
and file opening commands, and use those commands very carefully. Other rules of thumb when using
PHP are these:

Usenmagi c_quot es_gpc() where gopropriate. Thiswill help eiminate many kinds of
attacks.

Avoid file uploads. Modify the php.ini fileto dissblethem (fi | e_upl oads = O f).

Refer dso to Appendix B, Section B.2.2.4.6.

205
FOR INFORMATIONAL PURPOSES

Draft

D.12 PYTHON

Aswith other languages, be very careful when using functions and cdls that alow data to be executed
as parts of aprogram, including these:

Functions
exec()

eval ()
execfile()

Calls
conpi l e()
i nput ()

Privileged (trusted) Python programs that can be invoked by unprivileged users must not import the user
module, which causes the pythonrc.py fileto be read and executed. Doing so could alow an
unprivileged attacker to force the trusted program to run arbitrary code.

Python does very little compile-time checking. It implements no gatic typing or compile-time type
checking. Nor does it check that the number of parameters passed islegd for a given function or
method. Thereis an open source program, PyChecker, which can be used to check for common bugs
in Python source code. See Appendix C.

Python does support restricted execution through its RExec class. RExec is primarily intended for
executing applets and mobile code, but it can dso be used to limit privilege in a program when the code
has not originated externd to the program. By default, a restricted execution environment permits
reading (but not writing) of files, and it does not alow operations for network access or graphical user
interface (GUI) interaction. If you are changing these defaullts, beware of creeting security vulnerabilities
in the restricted environmen.

Python’ s implementation calls many hidden methods and passes most objects by reference. When
insarting a reference to a mutable vaue into a restricted program’s environment, first copy that mutable
vaue or use the Bastion module. Otherwise, the program may change the object in away thet isvisble
outside the restricted environment.

206
FOR INFORMATIONAL PURPOSES

Draft

APPENDIX E: SECURITY-ENHANCING LEGACY
APPLICATIONS

Thereis no clear-cut approach to providing security servicesto alegacy application. Many nor-Web
legacy applications support various methods for user access and authentication. Most legacy
applications require a client application to be installed on the user’s machine that connects to a server
over anework. Users are most likely authenticated to the gpplication through a basic username and
password combination, which cals abuilt-in access contral list (ACL). This ACL most likely does not
include a calable AP, which presents a dilemma when security needs change and/or more granular
Security is required, or both. Techniques presented in this appendix can be used to increase the security
of legacy aswell as new applications.

E.1 WEB ENABLING FOR SECURITY

Web enabling adds the inherent security features of the Web architecture, such as SSL and client
certificate authentication, to legacy applications. It also provides administrators of those applications
with centralized management and more control over who is able to use the gpplication. Web enabling,
commonly referred to as aporta solution, entails adding the ability for users to be administered through
digita rights management software which maps them to the Web-enabled legacy gpplication aswell as
to new Web gpplications.

There are anumber of COTS products that developers can use to Web enable and add centraized
management to legacy applications (see Appendix C). These systems provide away for a client/server
gpplication to communicate viaHTTP (e.g., using Microsoft Remote Desktop Protocol (RDP) or
Termina Server, or UNIX X Protocol Engines).

The implementation and architecture of these systems are nontrivid. If you intend to Web enable an
gpplication usng a COTS toal, be sure to get training in the use of that product and thoroughly read the
product’s technica documentation.

E.1.1 SECURITY CHALLENGES OF WEB ENABLING
The main chalenge when Web enabling alegacy gpplication is integrating the gpplication’s existing
authentication mechanism with the public key-enabled Web authentication capability. Most legacy

gpplications do not provide an API that alows the developer to override the existing log in module that
interacts with a built-in ACL. Consder the following scenario:

1. AnSSL session is established between browser and Web portal application.
2. The user submits a certificate to authenticate him to the Web portdl.

3. The user clicks on an available hyperlink on the portal, and his session is redirected to a Web-
enabled legacy application.

207
FOR INFORMATIONAL PURPOSES

Draft

4. Because the legecy application provides no AP to override its existing log-in module, the user
must reauthenticate to the legacy application by submitting his username and password.

Despite the cryptographic security of the Web portal, once the user reaches the legacy username and
password authentication diaogue behind that portal, he can Hill exploit the inherent weaknesses of static
passwords. The fact that he had to be cryptographicaly authenticated to the Web porta may provide a
certain degree of psychologica comfort. But that comfort does not trandate into actual user
trustworthiness of the user once he has made it past the Web portal.

Two possible ways to harmonize the legacy application’ s authentication with the Web porta’ s PKI-
basad authentication are these:

1. Incorporating the legacy application into an overall SSO framework that can map the user’s
PKI certificate to hislegacy username and password in the user’ s entry in the SSO system’s
credentids directory.

2. PK-enabling the legacy application to be able to retrieve the user’ s certificate from the same
directory used by the Web portal and to vdidate that certificate.

E.1.1.1 PK-Enabling of Web-Enabled L egacy Applications

Once alegacy gpplication has been Web enabled, you can implement some of the PKI-based security
sarvices of the Web architecture into the application. For example, the porta server can be enabled by
SSL/TLS (that is, transport layer security) to request a DoD PKI server session certificate from a
trusted certificate authority. The server can then create the SSL/TLS HTTPS session channel for basic
user authentication and provide client assurance of atrusted path to the server. Resources on the porta
could be configured to require users to authenticate themsealves using DoD PKI identity certificates
issued by aCA.

An additiond benefit of PK-enabling is the ability to add validation of certificate revocation lists (CRLS)
to the server. The server can then determine whether the certificate it receives from the user appearson
the list of revoked certificates generated by the CA, and to prevent the session from being established if
the certificate has been revoked (while issuing an error message to the user).

E.1.2 UPDATING SECURITY IN LEGACY WEB APPLICATIONS

Of coursg, if the legacy application isitself a Web application, Web enabling will not be necessary. The
legacy Web gpplication will mogt likely fit into an n-tier Web gpplication architecture, al of whichis
predicated on cryptographic security. Y ou could modify the legacy Web gpplication’ slogin page to
accept HTTP header variables and then write some code to automaticaly map header variablesto a
user profile. This approach works with most Web technologies, including ColdFusion, Active Server
Pages (ASP), Java Server Pages (JSP), and HTML.

208
FOR INFORMATIONAL PURPOSES

Draft

A three-tiered architecture can be gpplied to the legacy Web application with a client layer providing the
user’sview of the gpplication—including client browser and user certificate. Tier 2, thelogic layer that
the client calls on to access the resource, consists of two components. the middieware (portal or
wrapper) and the legacy application server. The middleware is used to control accessto the gpplication
server, and the gpplication server itsdlf is used to host the legacy Web gpplication. Tier 3 contains the
database that is required by the application.

Depending on the network configuration, server communication behind the firewall may need to not be
SSL encrypted, since the middleware is acting as afirewall.

E.1.2.1 Remplementing Authentication in Legacy Web Applications

The example that follows illustrates arewritten .jsp login page thet will accept HT TP parameter data
from aWeb portd server. This example could be applied to smilar Web technologies using the
required syntax. For this example, assume that the doLogin(); method is an ingtance method of a
JavaBean Web component or a Java servlet; doLogin(); performs the database cdls to the legacy Web
gpplication and performs the mapping between the recelved parameter and username and password.

<% String portal Header =

request. get Header (" HTTP_PORTAL_USER_ PARAM') ;

if (portal Header !=null && portal Header.length() <
12)

{
doLogi n(portal Header) ;

%
/'l Pseudo code for mapping portal data to database
doLogi n(String httpParam {

if (httpParam!= null) {

/'l Get database connection

/1l Map user info sent fromportal to the database
// Close connection

}

/[l return sonme flag

return;

}

An extratable or column reflecting the accepted parameter would have to be created in the database so
it could be mapped to the username and password fields of the user.

209
FOR INFORMATIONAL PURPOSES

Draft

E.1L.3INTEGRATING MAINFRAMESINTO WEB APPLICATIONS

Security for the mainframe was not designed with the Internet in mind. Rather, mainframe security was
designed for a closed, well-defined, and tightly controlled environment. Key characteristics of such
environments include a known and relaively trusted user population, awell-defined set of applications,
and firm connectivity boundaries. Application developers need to leverage existing backend mainframe
security systems through such mechanisms as mapping digitd certificates to RACF (the IBM mainframe
Security gpplication).

In addition, when integrating legacy systems as backend servers in Web applications, developers must
make sure that security does not stop with the connection between the Web server and the browser.
Instead, the developer should

Establish end-to-end user authentication: Set up an end-to-end user authentication
mechanism that reaches from the Web browser to the mainframe or other backend sarver.

Establish an end-to-end encrypted data channel: Use encryption from the browser to the
Web server and from the Web server to the backend system. Thisis done to ensure that
sendtive data are not exposed in trangt over externd and interna networks.

Implement PKI security end-to-end: Deploy PKI al the way from the browser to the
backend system, integrating it with existing security systems, such as RACF.

E.2 APPLICATION FIREWALLS

Application firewalls can be used to minimize incoming code alowed into the legacy gpplication. These
firewdls filter undesirable content from user input. They dso prevent tranamission into the legacy system
of undesirable mobile code and other active content. Some gpplication firewall products are listed in
Appendix C.

E.3SECURITY WRAPPERS

Security wrappers are software programs that encapsulate other programs that are suspected of
containing bugs or vulnerahilities. The wrapper program intercepts input intended for the wrapped
program and performs various integrity checks on that input on behaf of the wrapped program. Unless
the input passes these checks, it will not be passed into the wrapped program. Such wrappers are
usudly programmed to restrict the syntax of input to finite-length strings and safe character sets. An
exampleis awrapper that would protect a program that would otherwise accept data strings that could
induce buffer overflows or other security errors. One such available wrapper is overflow_wrapper.c,
available from AUSCERT (see Appendix C). Following are severd ways to implement wrappers:

210
FOR INFORMATIONAL PURPOSES

Draft

Implement application enhancements and additions in Java, to take advantage of the Java
sandbox capability.

Perform targeted rewrites of gpplication code to reduce size and functiondity: Rewrite the
gpplication codein away that reduces its size and complexity. Break the application program
up so that separate smdler programs perform different functions, instead of by one large,
complex program.

Implement static type checking at compile or load time (e.g., in Java, the type sysem is
enforced both by the Java compiler and the Java bytecode verifier).

Implement gpplication enhancements and additions using proof-carrying code, whereby the
code contains its own proof that it will not perform certain classes of illegd operations.

Implement dynamic array bounds checking at run time to ensure thet array bounds are
respected and programs cannot access array members outside of the bounds of the array. This
will help ensure that programs cannot treat arbitrary chunks of memory as members of an array.

Y ou can use Immunix StackGuard (see Appendix C) with the random canary (rather than the
terminator canary) to enhance GNU C Compiler (GCC) functiondity by adding an ingpection of
the process Sates integrity a compiletime. This inspection will ensure that a buffer overflow
attack has not corrupted any process state.

Mark the stack segments of each application process s address space as honexecutable. Kernel
patches are available for both Linux and Solaris.

211
FOR INFORMATIONAL PURPOSES

